M

<> MONTANA

Programming with C |

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

2024.01.22 E-mail: fangtian.zhong@montana.edu

Objectives

© To become familiar with the general form of a C
program and the basic elements in a program.

O To appreciate the importance of writing comments in a
program.

O To understand the use of data types and the
differences etween the data types int, double, and char.

©) To know how to declare variables.

Objectives

© To understand how to write assignment statements to
change the value of variables.

O To learn how C evaluates arithmetic expressions and
how to write them in C.

© To learn how to read data values into a program and to
display results.

© To understand how to write format strings for data
entry and display.

Objectives

O To learn how to use redirection to enable the use of
files for input/output.

O To understand the differences between syntax errors,
run-time errors, and logic errors, and how to avoid
them and to correct them.

C
» A high-level programming language.

» Developed in 1972 by Dennis Ritchie at AT&T Bell
Labs.

» Designed as the language to write the Unix operating
system.

» Resembles everyday English.

» Very popular.

Entering, Translating and Running a High-Level Language Program

Word Processor
(editor) Used to type in
program and corrections

Source File

v

Compiler ful
Attempts to translate program Successfu

into machine code

unsuciessful
Error Obiject File
Messages

Other Object Files Linker Executable File
> Resolves cross-references among object files '

Loader
Copies executable file into memory; initiates execution of instructions

v

Input data ﬁb-_> Results

Language Elements

v« preprocessor

* a system program that modifies a C program prior to its
compilation.

4+ library

* a collection of useful functions and symbols that may be
accessed by a program.

» each library has a standard header file whose name ends
with the symbols “.h".

[stdio.h }

Language Elements

4+« preprocessor directive

* a C program line beginning with # that provides an instruction
to the preprocessor.

{ #include <stdio.h> }

{ #define KMS PER MILE 1.609 }

Language Elements

+« constant macro
* a name that is replaced by a particular constant
 value before the program is sent to the compiler

{ #define KMS PER MILE 1.609 J constant macro

| l

constant [kms = KMS PER MILE * miles; J

Language Elements

< comment

* text beginning with /* and ending with */ that provides
supplementary information but is ignored by the preprocessor
and compiller.

» for single-line comments, can use //

// Get the distance 1n miles

{/ * (et the distance in miles */J

C Language Elements in Miles-to-Kilometers Conversion Program

/*

* Converts distances from miles to kilometers.

%

/ standard header file comment
preprocessor__y #include <stdio.h> /* printf, scanf definitions */

directive * #define KMS PER_MILE 1.609 /* conversion constant */
constant inte——— Feserved

main(void) word

{

double miles, /* distance in miles
variable » kms; /* equivalent distance in kllom?ters /
/* Get the distance in miles. */ €+—— comment

standard __» printf(“Enter the distance in miles>");
— » scanf(“%1f”, &miles);

identifier
/* Convert the distance to kilometers. */
kms ZJ%MILEMIGS;
special symbol
/* Display the distance in kilometers. */
printf(“That equals %f kilometers. \n”’, kms);
reserved
word —preturn (0); < punctuation

} «—— special symbol

Function main

©) Every C program has a main function.

[int main (void) }

O These lines mark the beginning of the main function
where program execution begins.

Function main

O declaration

» the part of a program that tells the compiler the names of
memory cells in a program.

O executable statements

* program lines that are converted to machine language
iInstructions and executed by the computer.

Variable Declarations
O variable

* a name associated with a memory cell whose value can
change.

O variable declarations

« statements that communicate to the compiler the names of
variables in the program and the kind of information stored in
each variable.

Variable Declarations

O C requires you to declare every variable used in a
program.

O A variable declaration begins with an identifier that tells
the C compiler the type of data store in a particular
variable.

[int hours; }

[double miles: }

Data Types
e int

 a whole number
e 435

i< double

* a real number with an integral part and a fractional part
separated by a decimal point
« 3.14159

< char

» an individual character value
* enclosed Iin single quotes
° ‘A!, ‘Z’, ‘2,, ‘9!, G*,, ﬁ!!

Executable Statements

O Follow the declarations in a function.

©) Used to write or code the algorithm and its
refinements.

O Are translated into machine language by the compiler.

©) The computer executes the machine language version.

Executable Statements

O assignment statemen

e an instruction that stores a value of a computational result in
a variable

{ kms = KMS PER MILE * miles; J

Executable Statements

O Assignment is not the same as an algebraic equation.

O The expression to the right of the assignment operator
is first evaluated.

O Then the variable on the left side of the assignment
operator is assigned the value of that expression.

[sum = sum + 1tem; J

The printf Function

© Displays a line of program output.
O Useful for seeing the results of a program execution.

{ printf(“That equals %f kilometers. \n”, kms); J

The printf Function

O function argument
* enclosed in parentheses following the function name

» provides information needed by the function

printf|(“That equals %f Kilometers. \n” , kms);

|

function name

The printf Function

O format string

e Inacallto

printf, a string of characters enclosed in

quotes, which specifies the form of the output line

printf (*

That equals %t kilometers. \n”, kms);

The printf Function

rint list
* In a call to printf, the variables or expressions whose
values are displayed

O

O placeholder
» a symbol beginning with % in a format string that
indicates where tQ display the output value

printf(“That equalsilometers. \n”’, kms);

Formatting Numbers in Program Output
O field width-

» the number of CW to display a value

© No. of decimal places
\Eﬁj

©) When formatting doubles,
fileld width needed and the
desired.

u may indicate the total
mber of decimal places

v

printf(“’Your result equals %S35.1f kilometers. \n”’, kms);

Let’s write a C program

-

That stores an int, double, and char

4 variable, and prints them all out.

~

/

Placeholders in format string

Placeholder Variable Type Function Use

%oC char printf/scanf
%d int printf/scanf
%t double printf

%lIf double scanf

The scanf Function

© Copies data from the standard input device (usually
the keyboard) into a variable.

- D
scanf(“%lIf” , &miles);

| scanf(“%c%c%c” , &letter 1, &letter 2, &letter 3);)

©) Must pass address of variable to store using the
addressof operator (&)

The return Statement

O Last line in the main function.

© Transfers control from your program to the operating
system.

© The value 0 indicates that your program executed
without an error.

{ return (0); J

Arithmetic Operators

Arithmetic Operator Meaning Example
5
+ addition 5 05 N 22018is77 0
- subtraction 5 05—_22018is33 0
.
* multiplication . 05* 22018151?0)
L 5.0/2.01s2.5
/ division 57957

% remainder 5%2i1s 1

Type casting

© converting an expression to a different type by
writing the desired type in parentheses in front of the
expression

s A
int x = 5;

\double y = (double) x;)

Rules for Evaluating Expressions

O Parentheses rule
 all expression must be evaluated separately
* nested parentheses evaluated from the inside out
* innermost expression evaluated first
O Operator precedence rule
* unary +, - first (setting sign)
« * /, % next
* binary +, - last
U Note prefix and postfix increment/decrement!
e ++3 and --a are executed before value is used

« a++ and a-- are executed after value is used

Rules for Evaluating Expressions

O Right Associativity
* Unary operators in the same subexpression and at the
same precedence level are evaluated right to left.

O Left Associativity

* Binary operators in the same subexpression and at the
same precedence lever are evaluated left to right.

Figure Evaluation Tree for area = Pl * radius * radius;

area =Pl *ra

ius * raqlius

area

Figure Step-by-Step Expression Evaluation

area = Pl * radius * radius
3.14159 2.0 2.0
6.28318

12.56636

Figure Evaluation Tree and Evaluation for v = (p2 - p1) / (t2 - t1);

p1 p2 t1 t2
4.5 9.0 0.0 | [60.0

v=(p2-p1)/(t2 -t1)

1(—)a 2(—)a v=(p2-p1)/(t2 - t1)

90 45 60.0 0.0

2 4.5 60.0
0.075

Vv

Figure Evaluation Tree and Evaluationforz-(a+b/2)+w™* -y

z‘—(a+b/2)+w*- z a b w 'y
8| (3| |9] 2| |5
1 ab \3(—)b z—(a+b/2)+w*-y
8§ 3 9 2 -5
2(4+)a 4(*)b 4 5
v 7 10
C
5@N 1
11
Z

Common Programming Errors

O debugging
* removing errors from a program
O syntax error
* a violation of the C grammar rules
 detected during program translation (compilation)
© run-time error
« an attempt to perform an invalid operation
» detected during program execution
O logic error
« an error caused by following an incorrect algorithm

Figure A Program with a Run-Time Error

#include <stdio.h>

int

main (void>

{
int first, second;
doubt temp, ans;
printf(“Enter two integers> ”);
scanf(“%d%d”, &first, &second);
temp = second / first;
ans = first / temp;
printf(“The result is %.3f\n”, ans);
return (0);

h

Enter two integers> 14 3

Arithmetic fault, divide by zero at line 272 of routline main

Figure A Program That Produces Incorrect Results Due to & Omission

#include <stdio.h>

1nt
main (void>
{
int first, second; sum;
printf(“Enter two integers> ”);
scanf(“%d%d”, first, second); /* ERROR | | should be &first, &second */
sum = first + second;
printf(“%d + %d = %d\n”, first, second, sum);
return (0);
h

Enter two integers> 14 3
5971289 + 5971297 = 11942586

Wrap Up

© Every C program has preprocessor directives and a
main function.

©) The main function contains variable declarations and
executable statements.

O C’s data types enable the compiler to determine how
to store a value in memory and what operations can
be performed on that value.

M

<> MONTANA

THE END

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

2024.01.22 E-mail: fangtian.zhong@montana.edu

