
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2024.01.22

2

Objectives
To become familiar with the general form of a C
program and the basic elements in a program.
To appreciate the importance of writing comments in a
program.
To understand the use of data types and the
differences etween the data types int, double, and char.
To know how to declare variables.

3

Objectives
To understand how to write assignment statements to
change the value of variables.
To learn how C evaluates arithmetic expressions and
how to write them in C.
To learn how to read data values into a program and to
display results.
To understand how to write format strings for data
entry and display.

4

Objectives
To learn how to use redirection to enable the use of
files for input/output.
To understand the differences between syntax errors,
run-time errors, and logic errors, and how to avoid
them and to correct them.

5

C
A high-level programming language.
Developed in 1972 by Dennis Ritchie at AT&T Bell
Labs.
Designed as the language to write the Unix operating
system.
Resembles everyday English.
Very popular.

6

Entering, Translating and Running a High-Level Language Program

Word Processor
(editor) Used to type in
program and corrections

Source File
Format: text

Compiler
Attempts to translate program

into machine code
Successful

Error
Messages

Object File
Format: binary

Other Object Files
Format: binary

Linker
Resolves cross-references among object files

Executable File
Format: binary

Loader
Copies executable file into memory; initiates execution of instructions

Input data Results

unsuccessful

7

Language Elements
preprocessor
• a system program that modifies a C program prior to its

compilation.

library
• a collection of useful functions and symbols that may be

accessed by a program.
• each library has a standard header file whose name ends

with the symbols “.h”.
stdio.h

8

Language Elements
preprocessor directive
• a C program line beginning with # that provides an instruction

to the preprocessor.

#include <stdio.h>

#define KMS_PER_MILE 1.609

9

Language Elements
constant macro
• a name that is replaced by a particular constant
• value before the program is sent to the compiler

#define KMS_PER_MILE 1.609

constant kms = KMS_PER_MILE * miles;

constant macro

10

Language Elements
comment
• text beginning with /* and ending with */ that provides

supplementary information but is ignored by the preprocessor
and compiler.

• for single-line comments, can use //

/* Get the distance in miles */
// Get the distance in miles

11

C Language Elements in Miles-to-Kilometers Conversion Program
/*
 * Converts distances from miles to kilometers.
 */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int
main(void)
{
 double miles, /* distance in miles
 kms; /* equivalent distance in kilometers */

 /* Get the distance in miles. */
 printf(“Enter the distance in miles>”);
 scanf(“%1f”, &miles);

 /* Convert the distance to kilometers. */
 kms = KMS_PER_MILE * miles;

 /* Display the distance in kilometers. */
 printf(“That equals %f kilometers. \n”, kms);

 return (0);
}

commentstandard header file
preprocessor

directive
constant reserved

word

variable
comment

standard
identifier

special symbol

reserved
word

special symbol
punctuation

12

Function main
Every C program has a main function.

These lines mark the beginning of the main function
where program execution begins.

int main (void)

13

Function main
declaration
• the part of a program that tells the compiler the names of

memory cells in a program.

executable statements
• program lines that are converted to machine language

instructions and executed by the computer.

14

Variable Declarations
variable
• a name associated with a memory cell whose value can

change.

variable declarations
• statements that communicate to the compiler the names of

variables in the program and the kind of information stored in
each variable.

15

Variable Declarations
C requires you to declare every variable used in a
program.
A variable declaration begins with an identifier that tells
the C compiler the type of data store in a particular
variable.

int hours;

double miles;

16

Data Types
int
• a whole number
• 435
double
• a real number with an integral part and a fractional part

separated by a decimal point
• 3.14159
char
• an individual character value
• enclosed in single quotes
• ‘A’, ‘z’, ‘2’, ‘9’, ‘*’, ‘!’

17

Executable Statements
Follow the declarations in a function.
Used to write or code the algorithm and its
refinements.
Are translated into machine language by the compiler.
The computer executes the machine language version.

18

assignment statemen
• an instruction that stores a value of a computational result in

a variable

Executable Statements

kms = KMS_PER_MILE * miles;

19

Executable Statements
Assignment is not the same as an algebraic equation.
The expression to the right of the assignment operator
is first evaluated.
Then the variable on the left side of the assignment
operator is assigned the value of that expression.

sum = sum + item;

20

The printf Function
Displays a line of program output.
Useful for seeing the results of a program execution.

printf(“That equals %f kilometers. \n”, kms);

21

The printf Function
function argument
• enclosed in parentheses following the function name
• provides information needed by the function

printf (“That equals %f kilometers. \n”, kms);

function name

22

The printf Function
format string
• in a call to printf, a string of characters enclosed in

quotes, which specifies the form of the output line

printf (“That equals %f kilometers. \n”, kms);

23

The printf Function
print list
• in a call to printf, the variables or expressions whose

values are displayed
placeholder
• a symbol beginning with % in a format string that

indicates where to display the output value

printf(“That equals %f kilometers. \n”, kms);

24

field width
• the number of columns used to display a value

No. of decimal places
When formatting doubles, you may indicate the total
field width needed and the number of decimal places
desired.

printf(“Your result equals %5.1f kilometers. \n”, kms);

Formatting Numbers in Program Output

25

Let’s write a C program

That stores an int, double, and char
variable, and prints them all out.

26

Placeholders in format string

Placeholder Variable Type Function Use

%c char printf/scanf
%d int printf/scanf
%f double printf
%lf double scanf

27

The scanf Function
Copies data from the standard input device (usually
the keyboard) into a variable.

Must pass address of variable to store using the
addressof operator (&)

scanf(“%lf”, &miles);
scanf(“%c%c%c”, &letter_1, &letter_2, &letter_3);

28

The return Statement
Last line in the main function.
Transfers control from your program to the operating
system.
The value 0 indicates that your program executed
without an error.

return (0);

29

Arithmetic Operators

Arithmetic Operator Meaning Example

+ addition 5 + 2 is 7
5.0 + 2.0 is 7.0

– subtraction 5 – 2 is 3
5.0 – 2.0 is 3.0

* multiplication 5 * 2 is 10
5.0 * 2.0 is 10.0

/ division 5.0 / 2.0 is 2.5
5 / 2 is 2

% remainder 5 % 2 is 1

30

Type casting
 converting an expression to a different type by
writing the desired type in parentheses in front of the
expression

int x = 5;
double y = (double) x;

31

Rules for Evaluating Expressions
Parentheses rule

• all expression must be evaluated separately
• nested parentheses evaluated from the inside out
• innermost expression evaluated first

Operator precedence rule
• unary +, - first (setting sign)
• *, /, % next
• binary +, - last

Note prefix and postfix increment/decrement!
• ++a and --a are executed before value is used
• a++ and a-- are executed after value is used

32

Rules for Evaluating Expressions
Right Associativity
• Unary operators in the same subexpression and at the

same precedence level are evaluated right to left.

Left Associativity
• Binary operators in the same subexpression and at the

same precedence lever are evaluated left to right.

33

Figure Evaluation Tree for area = PI * radius * radius;

area = PI * radius * radius

*1 c

*2

area

34

Figure Step-by-Step Expression Evaluation

area = PI * radius * radius
3.14159 2.0

6.28318
12.56636

2.0

35

Figure Evaluation Tree and Evaluation for v = (p2 - p1) / (t2 - t1);

v = (p2 – p1) / (t2 – t1)

–1 a

–3

v

–2 a v = (p2 – p1) / (t2 – t1)
9.0

4.5
0.075

4.5 60.0 0.0

60.0

4.5 9.0 0.0 60.0
p1 p2 t1 t2

36

Figure Evaluation Tree and Evaluation for z - (a + b / 2) + w * -y

z – (a + b / 2) + w * -y

–1 a,b

z

–3 b

*4 b+2 a

–5 c +6

8

4

1
7

8 3 9 2
z a b w

-5
y

z – (a + b / 2) + w * -y
3 9 2 -5

5
10

11

37

Common Programming Errors
debugging

• removing errors from a program
syntax error

• a violation of the C grammar rules
• detected during program translation (compilation)

run-time error
• an attempt to perform an invalid operation
• detected during program execution

logic error
• an error caused by following an incorrect algorithm

38

Figure A Program with a Run-Time Error
#include <stdio.h>

int
main (void>
{
 int first, second;
 doubt temp, ans;

 printf(“Enter two integers> ”);
 scanf(“%d%d”, &first, &second);
 temp = second / first;
 ans = first / temp;
 printf(“The result is %.3f\n”, ans);

 return (0);
}

Enter two integers> 14 3
Arithmetic fault, divide by zero at line 272 of routline main

39

Figure A Program That Produces Incorrect Results Due to & Omission

#include <stdio.h>

int
main (void>
{
 int first, second; sum;

 printf(“Enter two integers> ”);
 scanf(“%d%d”, first, second); /* ERROR | | should be &first, &second */
 sum = first + second;
 printf(“%d + %d = %d\n”, first, second, sum);

 return (0);
}

Enter two integers> 14 3
5971289 + 5971297 = 11942586

40

Wrap Up
Every C program has preprocessor directives and a
main function.
The main function contains variable declarations and
executable statements.
C’s data types enable the compiler to determine how
to store a value in memory and what operations can
be performed on that value.

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2024.01.22

