
Programming with C I

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2024.10.21

2

C Source Files
A C program may be divided among any number of
source files.
By convention, source files have the extension .c.
Each source file contains part of the program, primarily
definitions of functions and variables.
One source file must contain a function named main,
which serves as the starting point for the program.

3

Advantage of Splitting
Splitting a program into multiple source files has significant
advantages:
• Grouping related functions and variables into a single file helps

clarify the structure of the program.
• Each source file can be compiled separately, which saves time.
• Functions are more easily reused in other programs when

grouped in separate source files.

4

Header
Problems that arise when a program is divided into several
source files:
• How can a function in one file call a function that’s defined in

another file?
• How can a function access an external variable in another file?
• How can two files share the same macro definition or type

definition?
The answer lies with the #include directive, which makes it
possible to share information among any number of source
files.

5

Header
The #include directive tells the preprocessor to insert the
contents of a specified file.
Information to be shared among several source files can be
put into such a file.
#include can then be used to bring the file’s contents into
each of the source files.
Files that are included in this fashion are called header files
(or sometimes include files).
By convention, header files have the extension .h.

6

MACRO
Most large programs contain macro definitions and type
definitions that need to be shared by several source files.

These definitions should go into header files.

7

Example MACRO
Suppose that a program uses macros named BOOL, TRUE,
and FALSE.
Their definitions can be put in a header file with a name like
boolean.h:
#define BOOL int
#define TRUE 1
#define FALSE 0?
Any source file that requires these macros will simply contain
the line
#include "boolean.h"

8

Example Sharing MACRO
A program in which two files include boolean.h:

#define BOOL int
#define TRUE 1
#define FALSE 0?

#include “boolean. h” #include “boolean. h”

boolean. h

9

MACRO Sharing – Why?
Advantages of putting definitions of macros and types in
header files:
• Saves time. We don’t have to copy the definitions into the

source files where they’re needed.
• Makes the program easier to modify. Changing the definition

of a macro or type requires editing a single header file.
• Avoids inconsistencies caused by source files containing

different definitions of the same macro or type.

10

Sharing Function Prototype
Suppose that a source file contains a call of a function f that’s
defined in another file, foo.c.
Calling f without declaring it first is risky.
• The compiler assumes that f’s return type is int.
• It also assumes that the number of parameters matches the

number of arguments in the call of f.
So, we put f’s prototype in a header file (foo.h), then include
the header file in all the places where f is called.
We’ll also need to include foo.h in foo.c, enabling the
compiler to check that f’s prototype in foo.h matches its
definition in foo.c.

11

Sharing Variable
To share a variable among files, we put its definition in one
source file, then keyword extern is used to declare a variable
without defining it.
For example,
• int i; // in file1.c
• extern int i; // in file2.c
extern informs the compiler that i is defined elsewhere in the
program, so there’s no need to allocate space for it.

12

hello.h
void hello (const char * name);

Compiling Multiple Source Files

helloExample.c
#include<stdio.h>
#include “hello.h”
extern int shared_variable;
int main (void)
{
 hello (“ICEN 200”);
 printf("Value of shared_variable in
helloFn.c: %d\n", shared_variable);
 return 0;}

helloFn.c
#include <stdio.h>
#include “hello.h”
int shared_variable = 10;
void hello (const char * name)
{
 printf (“Hello %s!\n”, name);
}

$gcc helloExample.c helloFn.c -o hello
$./hello
Hello ICEN 200!

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2024.10.21

