
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2024.10.30

2

Arrays of Pointers
Consider some examples:
• int data1, data2, *ptr1, *ptr2, *save;

 data1 = 100; data2 = 200;
 ptr1 = &data1; ptr2 = &data2;

We could swap the values of the data and store the swapped
values in data1 and data2 or we could simply swap the values of
the pointers:
 save =ptr1;
 ptr1 = ptr2;
 ptr2 = save;

3

Arrays of Pointers
In general, an array of pointers can be used to point to an array of data
items.
The advantage of a array pointer is that the pointers can be reordered in
any manner without moving the data items.
This approach saves a lot of time, with the additional advantage that the
data items remain available in the original order.

4

Arrays of Pointers
Let us see how we might implement such a scheme.
STRPTRS: Given an array of strings, use pointers to order the
strings in sorted form, leaving the array unchanged.
We will use an array of character pointers to point to the strings
declared as follows:
• char * flowerptr[MAX];

5

Arrays of Pointers
It is also possible to assign the value of any string pointer to

flowerptr[i]; for example, if s is a string, then it is possible to assign
the pointer value s to flowerptr[i]:
• flowerptr[i] = s;
In particular, we can read strings into a two dimensional array,
flowers[][], and assign each string pointer, flowers[i] to the element
of the pointer array, flowersptr[]:
• for (i = 0; i < MAX; i++)
• flowerptr[i] = flowers[i];

6

Arrays of Pointers
The strings can then be accessed either by flowers[i] or by
flowerptr[i].
We can then reorder the pointers in flowerptr[] so that they
successively point to the strings in sorted order.
We can then print the strings in the original order by accessing
them through flowers[i] and print the strings in sorted order by
accessing them through flowerptr[i].

7

Figure An Array of Pointers

alphap original

tulip\0

marigold\0

petunia\0

rose\0

daisy\0

8

Driver for Sorting Pointer Array Program
#include <stdio.h>
#include <string.h>

#define NUM_FLOWERS 5
#define MAX_LEN 20

void selectionSort(char *flowerptr[], int n) {
int i, j;
char *temp;

for (i = 0; i < n - 1; i++) {
int minIndex = i;
for (j = i + 1; j < n; j++) {

if (strcmp(flowerptr[j], flowerptr[minIndex]) < 0) {
minIndex = j;

}
}
if (minIndex != i) {

// Swap pointers in flowerptr array
temp = flowerptr[minIndex];
flowerptr[minIndex] = flowerptr[i];
flowerptr[i] = temp;

}
}

}

9

Code for sortptrs()
int main() {

// Two-dimensional array of flower names
char flowers[NUM_FLOWERS][MAX_LEN] = {"tulip", "marigold", "petunia", "rose", "daisy"};

// Array of pointers to strings
char *flowerptr[NUM_FLOWERS];

// Assign each string pointer to the corresponding element of the pointer array
for (int i = 0; i < NUM_FLOWERS; i++) {

flowerptr[i] = flowers[i];
}

// Print original order
printf("Original order:\n");
for (int i = 0; i < NUM_FLOWERS; i++) {

printf("%s ", flowers[i]);
}
printf("\n");

// Sort the flower pointers
selectionSort(flowerptr, NUM_FLOWERS);

// Print sorted order
printf("\nSorted order:\n");
for (int i = 0; i < NUM_FLOWERS; i++) {

printf("%s ", flowerptr[i]);
}
printf("\n");

return 0;
}

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2024.10.30

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

