
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2024.11.01

2

Pointer Arithmetic
All programming languages support using binary operators such as
addition and subtraction for the purpose of standard computer
arithmetic, such as:
double a = 2, b=4;
double y = a + b;
C in addition to standard arithmetic operations supports pointer
arithmetic operations. It means you can use operators + (addition)
and – (subtraction) to perform arithmetic operations on pointers.
• Pointer arithmetic is generally useful only to refer to the elements of an

array.
• Adding an integer to or subtracting an integer from a pointer yields a

pointer with the same type.

3

Pointer Arithmetic
Legal pointer arithmetic in C
• Pointer + Integer
• Integer + Pointer
• Pointer – Integer
• Pointer – Pointer
• Pointer++
• ++Pointer
• Pointer--
• --Pointer

Other arithmetic operations are illegal.
Examples of Illegal pointer arithmetic
• Integer – Pointer
• Pointer + Pointer.
• Pointer * Integer
• Pointer / Integer
• Etc…

4

Pointer Arithmetic
“pointer + n” refers to the address of nth element , from the
current address.
Assuming n is an integer and the pointer has a valid
address value:

pointer + n = = address_value + n * sizeof (type)
Example:
double d[3] = {4.5, 6.9, 7.7};
double* ptr = &d[0];

5

Pointer Arithmetic

●

4.5 6.9 7.7
988 996 1004
d [0] d [1] d [2]

4.5 6.9 7.7
988 996 1004
d [0] d [1] d [2]

addresses

addresses●

current value
of ptr is: 988

new value of
ptr is: 1004

ptr = ptr +2; // The new value of ptr is 988 + 2*8 = 1004

• The new value of *ptr is 7.7

ptr

ptr

6

Pointer Arithmetic
Assuming n is an integer and the pointer has a valid
address value:

pointer - n = = address_value - n * sizeof (type)
Example:
double d[3] = {4.5, 6.9, 7.7};
double* ptr = &d[2];

7

Pointer Arithmetic

●

4.5 6.9 7.7
988 996 1004
d [0] d [1] d [2]

4.5 6.9 7.7
988 996 1004
d [0] d [1] d [2]

addresses

addresses●

current value
of ptr is: 1004

new value of
ptr is: 996

ptr--; // The new value of ptr is 1004 - (1*8) = 996

• The new value of *ptr is 6.9

ptr

ptr

8

Pointer Arithmetic
“Pointer1 – Pointer2”, results in an integer value that represents the
number of elements between the two pointers:

int arr[5] = {2, 6, 4, 7, 9};
int* ptr;
int diff;
ptr = arr + 5; // ptr points to arr[5] after the last element
// Allowed to write: ptr = 5 + arr;
diff = ptr – arr;

• In this example the value of diff will be 5. Why?
Ø If the address of first element of arr is 1000, the value of ptr will be

1020, assuming that size of int is 4 bytes, the value of diff is
calculated as follows:

diff = (1020 – 1000)/sizeof(int) = 20/4 = 5

9

More on Arrays and Pointers Notations
Array notations and pointer notations are interchangeable.

Based on pointer arithmetic rules explained in previous slides, you
can replace a square bracket notation that refers to an element of
the array with a pointer notation.

Consider the following declarations:

int myArray[5] = { 31, 41, 22, 66, 90};

int* ptr = myArray + 2;

10

More on Arrays and Pointers Notations
The following statements are all true:

myArray == &myArray[0]
myArray[0] == *myArray
myArray[2] == *(myArray+2)
myArray + 2 == &myArray[2]
2 + myArray == &myArray[2]
ptr + 2 == &ptr[2]
ptr + 2 == &myArray[4]
ptr – 2 == &ptr[-2];
*(ptr – 2) == ptr [-2]

11

Pointer Arithmetic
To learn some of the applications of pointer arithmetic, let’s take a
look at different versions of a small c-string function that calculates
the length of its c-string argument.

The next few slides shows:
• How array notations and pointer notations are interchangeable
• How the same problem can be solved, using different ways
Ø In terms of performance efficiency, they are all almost the

same.

12

Version 1 – Using Array Notation

int main ()

{

 int length;

 const char *s = “xyz”;

 length = my_strlen (s);

 printf (“The string length is %d.”, length);

 return 0;

}

int my_strlen (const char* string)
 {
 int i = 0;
 while (string [i] != ‘\0’)
 {
 i++;
 }
 return i;
 }

• Now, lets write a different version of
my_strlen that uses pointer arithmetic.

13

Version 2 – Using Pointer Notation and Pointer Arithmetic

int main ()

{

 int length;

 const char *s = “xyz”;

 length = my_strlen (s);

 printf (“The string length is %d.”, length);

 return 0;

}

int my_strlen (const char* string)
{
 int i = 0;
 while (*(string + i) != ‘\0’)
 {
 i++;
 }
 return i;
}

• Is there still another way to write this function.
The answer is yes. See the next slide

14

Version 3 - This is another possible way

int main ()

{

 int length;

 const char *s = “xyz”;

 length = my_strlen (s);

 printf (“The string length is %d.”,

length);

 return 0;

}

int my_strlen (const char* string)
{
 int i = 0;
 while (*string != ‘\0’)
 {
 string++;
 i++;
 }
 return i;
}

• What about another version? The answer will
be discussed during the lecture.

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2024.11.01

