— M
<o MONTANA
Splitting C program into

multiple files

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering
2024.03.25 E-mail: fangtian.zhong@montana.edu

B C Source Files

O A C program may be divided among any number of
source files.

© By convention, source files have the extension .c.

© Each source file contains part of the program, primarily
definitions of functions and variables.

O One source file must contain a function named main,
which serves as the starting point for the program.

—A

¥ Advantage of Splitting

O Splitting a program into multiple source files has significant
advantages:

» Grouping related functions and variables into a single file helps
clarify the structure of the program.

« Each source file can be compiled separately, which saves time.

 Functions are more easily reused in other programs when
grouped in separate source files.

—A

¥ Header

O Problems that arise when a program is divided into several
source files:

« How can a function in one file call a function that’s defined in
another file?

« How can a function access an external variable in another file?

 How can two files share the same macro definition or type
definition?
O The answer lies with the #include directive, which makes it

possible to share information among any number of source
files.

—J

¥ Header

U The #include directive tells the preprocessor to insert the
contents of a specified file.

O Information to be shared among several source files can be
put into such a file.

O #include can then be used to bring the file’s contents into
each of the source files.

O Files that are included in this fashion are called header files
(or sometimes include files).

O By convention, header files have the extension .h.

_—‘

¥ MACRO

© Most large programs contain macro definitions and type
definitions that need to be shared by several source files.

O These definitions should go into header files.

__

¥ Example MACRO

© Suppose that a program uses macros named BOOL, TRUE,
and FALSE.

O Their definitions can be put in a header file with a name like

boolean.h:
#define BOOL int

#define TRUE 1
#define FALSE 07?

O Any source file that requires these macros will simply contain

the line
#include "boolean.h"

;

¥ Example Sharing MACRO

O A program in which two files include boolean.h:

#define BOOL int
#define TRUE 1
#define FALSE 07?

/ boolean. h\

#include ‘“boolean. h” #include “boolean. h”

—

¥ MACRO Sharing — Why?

U Advantages of putting definitions of macros and types in
header files:

« Saves time. We don’t have to copy the definitions into the
source files where they’re needed.

« Makes the program easier to modify. Changing the definition
of a macro or type requires editing a single header file.

« Avoids inconsistencies caused by source files containing
different definitions of the same macro or type.

—‘

¥ Sharing Function Prototype

U Suppose that a source file contains a call of a function f that's
defined in another file, foo.c.

© Calling f without declaring it first is risky.
« The compiler assumes that f's return type is int.
* |t also assumes that the number of parameters matches the
number of arguments in the call of f.

O So, we put f's prototype in a header file (foo.h), then include
the header file in all the places where f is called.

© We'll also need to include foo.h in foo.c, enabling the
compiler to check that f's prototype in foo.h matches its

definition in foo.c. n

¥ Sharing Variable

© To share a variable among files, we put its definition in one
source file, then keyword extern is used to declare a variable
without defining it.

O For example,
e inti=2;//infilel.c
« externinti;// infile2.c

O extern informs the compiler that i is defined elsewhere in the
program, so there’s no need to allocate space for it.

—J

¥ Compiling Multiple Source Files

helloExample.c hello.h
#include <stdio.h> void hello (const char * name);
#include “hello.h”
extern int shared variable; helloFn.c
int main (void) #include <stdio.h>
{ #include “hello.h”
hello (“ICEN 2007); int shared variable = 10;
printf(""Value of shared variable in filel.c: void hello (const char * name)
%d\n", shared variable); {
return 0; printf (“Hello %s!\n”, name);
} $gce helloExample.c helloFn.c -0 hello |}
$./hello

Hello ICEN 200!
$ -

PE—

MONTANA
¢ STATE UNIVERSITY

THE END

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering
2024.03.25 E-mail: fangtian.zhong@montana.edu

