

# **Programming with C I**

Fangtian Zhong CSCI 112

> Gianforte School of Computing Norm Asbjornson College of Engineering E-mail: fangtian.zhong@montana.edu

2024.01.xx

### **Introduction to Arrays**

- A collection of variable data
  - Same name
  - Same type
  - Contiguous block of memory
- 🔁 Can manipulate or use
  - Individual variables or
  - 'List' as one entity

| -45<br>6 |               |
|----------|---------------|
| 0        |               |
| 72       |               |
| 1543     | Celsius       |
| -89      | temperatures: |
| 0        | Type is int.  |
| 62       |               |
| -3       |               |
| 1        |               |
| 66453    |               |
| 78       |               |
|          |               |

### **Introduction to Arrays**

- Used for lists of like items
  - Scores, speeds, weights, etc.
  - Same type



- Avoids declaring multiple simple variables
- Used when we need to keep lots of values in memory
  - Sorting
  - Determining the number of scores above/below the mean
  - Printing values in the reverse order of reading
  - Etc.

### **Declaring Arrays**



General Format for declaring arrays

<data type> <variable> [<size>];



- Solution Soluti Solution Solution Solution Solution Solution Solution S
- Static entity same size throughout program

Examples:





### **Defined Constant as Array Size**

Use defined/named constant for array size

- Improves readability
- Improves maintainability

Examples:

```
const int NUMBER_OF_STUDENTS = 50;
// ..
```

int scores[NUMBER\_OF\_STUDENTS];

#define NUMBER\_OF\_STUDENTS 50;

// ..

int scores[NUMBER\_OF\_STUDENTS];





#### Printf("<mark>%d\n</mark>", c[5]);

Note two uses of brackets:

- In declaration, specifies SIZE of array
- Anywhere else, specifies a subscript/index



#### Size, subscript need not be literal constant

#### Can be named constant or expression

int scores[MAX\_SCORES]; // MAX\_SCORES is a constant
scores[3] = 99;

### **Major Array Pitfall**



### **Initializing Arrays**

#### >> Arrays can be initialized at declaration

int scores[3] = {76, 98, 83};

- » Size cannot be variable
- » Equivalent to

int scores[3]; scores[0] = 76; scores[1] = 98; scores[2] = 83;



### **Auto-Initializing Arrays**

- If fewer values than size supplied:
  - Fills from beginning
  - Sills 'rest' with zero of array base type
    - » Declaration

int scores[5] = {76, 98, 83};

Performs initialization

scores[0] = 76; scores[1] = 98; scores[2] = 83; scores[3] = 0; scores[4] = 0;



### **Auto-Initializing Arrays**

- If array size is left out
  - Declares array with size required based on

number of initialization values

🔉 Example:

int scores[ ] = {76, 98, 83};

» Allocates array scores with size of 3



### **Partially Filled Arrays**

- A program may need to process many lists of similar data but the lists may not all be the same length.
- In order to reuse an array for processing more than one data set, you can declare an array large enough to hold the largest data set anticipated.
- Then your program should keep track of how many array elements are actually in use.





## THE END

Fangtian Zhong CSCI 112

> Gianforte School of Computing Norm Asbjornson College of Engineering E-mail: fangtian.zhong@montana.edu

2024.02.14