
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2024.02.16

2

Basic Terminology
data structure
• a composite of related data items stored under the

same name

array
• a collection of data items of the same type

3

Declaring and Referencing Arrays
array element
• a data item that is part of an array

subscripted variable
• a variable followed by a subscript in brackets,

designating an array element

array subscript
• a value or expression enclosed in brackets after the

array name, specifying which array element to
access

4

Table Statements That Manipulate Array x
Statement Explanation
printf(“%.1f, x[0]); Displays the value of x[0], which is 16.0.
x[3] = 25.0; Stores the value 25.0 in x[3].
sum = x[0] + x[1]; Stores the sum of x[0] and x[1], which is 28.0 in the variable sum.
sum += x[2] Adds x[2] to sum. The new sum is 34.0.
x[3] += 1.0; Adds 1.0 to x[3]. The new x[3] is 26.0;
x[2] = x[0] + x[1]; Stores the sum of x[0] and x[1] in x[2]. The new x[2] is 28.0.

Array x
x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

16.0 12.0 28.0 26.0 2.5 12.0 14.0 -54.5

5

Using for Loops for Sequential Access

for (i = 0; i < SIZE; ++i)
 scores[i] = i * i;

Array scores

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

0 1 4 9 16 25 36 49 64 81 100

6

Sizeof and Arrays

You cannot use sizeof to determine the number

of elements being used in a partially filled array.

 Operator sizeof returns the total bytes in the argument
Total elements = sizeof(array) / sizeof(data-type)

 Sizeof does not return total bytes being used

int scores[MAX_SCORES];

int scoresBytes = sizeof(scores); // MAX_SCORES * 4

int scoresElements = sizeof(scores) / sizeof(int); // MAX_SCORES

7

Loading an Array
 Be careful not to overfill

Do not read directly into array elements

// Example: Load array of scores checking for overfill
const int MAX_SCORES = 50;
int scores[MAX_SCORES};
int score, scoreCount;

// Load into array, check for too many
for (scoreCount=0; scanf(“%d”, &score) == 1; scoreCount++) {

// scoreCount here is one less than actual scores read
if (scoreCount ＞= MAX_SCORES) {

printf(“Unable to store moe than %d scores. \n”, MAX_SCORES);
exit(1); // stdlib: exit program even in nested function

}
scores[scoreCount] = score;

}

8

Multidimensional Arrays

Column index

Row indexArray name

 Arrays with more than one dimension
Declaration: Additional sizes each enclosed in brackets

 Two dimensions
Table or ‘array of arrays’

Requires two subscripts – row and column

int a[3] [4];

Column 0 Column 1 Column 2 Column 2
Row 0 a[0] [0] a[0] [1] a[0] [2] a[0] [3]
Row 1 a[1] [0] a[1] [1] a[1] [2] a[1] [3]
Row 2 a[2] [0] a[2] [1] a[2] [2] a[2] [3]

9

Initializing Multidimensional
 Nested lists

Unspecified values set to zero

 2D Example:

int nums[4] [5] = { {10, 6, -7, 13, 28},
{10, 5, 44, 8}.
{33, 20, 1, 0, 14},
{2, 66, 25, 37, 1}

}

10

Loading a Two-dimensional Array

// assumes data matches table dimensions

int row, col, value;

for (row=0; row＜rows; row++)

for (col=0; col＜cols; col++) {

scanf(“%d”, &value);

a[row] [col] = value;

}

11

for-loops with Arrays
 Natural counting loop

Naturally works well 'counting thru' elements of an array

 General form for forward direction
for (subscript = 0; subscript < size; subscript++)

 General form for reverse direction
for (subscript = size-1; subscript >= 0; subscript--)

12

for-loops with Arrays Examples

int scoreSub;
// Print forward
for (scoreSub = 0; scoreSub<12; scoreSub++)

printf(“Score %d is %d\n”, scoreSub+1,
scores[scoreSub]);

// Print backward, in reverse
for (scoreSub = 11; scoreSub ＞= 0； scoreSub--)

printf(“Score %d is %d\n”, scoreSub+1,
scores[scoreSub]);

Score 1 is 56
Score 2 is 52
Score 3 is 80
Score 4 is 74
...
Score 12 is 87

Score 12 is 87
Score 11 is 97
Score 10 is 86
Score 9 is 80
...
Score 1 is 56

56
52
80
74
70
95
92
94
80
86
97
87

13

Uses of Defined Constant
 Use everywhere size of array is needed

In for-loop for traversal:

In calculations involving size:

When passing array a function:

int score;
for (score=0; score＜NUMBER_OF_STUDENTS; score++)

printf(“%d\n”, scores[score]);

lastIndex = NUMBER_OF_STUDENTS - 1;
lastScore = scores[NUMBER_OF_STUDENTS - 1];

total = sum_scores(scores, NUMBER_OF_STUDENTS);

14

Three-dimensional Visualization

int cubes[3] [3] [3];
(2, 0,

0)
(2, 0,

4)

(2, 3,
0)

(2, 3,
4)

1, 0, 0) (1, 0,
4)

(1, 3,
0)

(1, 3,
4)

(0, 0,
0)

(0, 0,
4)

(0, 3,
0)

(0, 3,
4)

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2024.02.16

