
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2025.02.10

2

Compound assignment

Operator Definition
+ addition
- subtraction
* multiplication
/ division

% remainder

Can do these too:
+=
-=
*=
/=

%=

3

Increment and Decrement Operators
• counter = counter + 1

count += 1
counter++
++counter

• counter = counter - 1
count -= 1
counter--
--counter

4

while Statement Syntax

while (loop repetition condition)
 statement;

/* display N asterisks. */
count_star = 0;
while (count_star < N) {
 printf(“*”);
 count_star = count_star + 1;
}

5

while Statement Syntax

while (loop repetition condition)
 statement;

/* display N asterisks. */
count_star = 0;
while (count_star < N) {
 printf(“*”);
 count_star += 1;
}

6

Increment and Decrement Operators
side effect
• – a change in the value of a variable as a result of carrying

out an operation

7

Increment and Decrement Operators

2 ？

i j

3 3 3 2

j = ++i;

prefix:
Increment i and then use it.

3
i ij j

j = i++;

postfix:
Use i and then increment it..

Before..

Increments...

After...

8

The for Statement Syntax
for (initialization expression;
 loop repetition condition;
 update expression)
 statement;

/* Display N asterisks. */
for (count_star = 0;
 count_star < N;
 count_star += 1)
 printf(“*”);

9

do-while Syntax

do
 statement;
while (loop repetition condition);

/* Find first even number input */
do
 status = scanf(“%d”, &num);
while (status > 0 && (num % 2) != 0);

We will talk more about the
output of scanf next time.

10

do-while Statement
For conditions where we know that a loop must execute
at least one time.

1. Get a data value

2. If data value isn’t in the acceptable range, go back to
step 1.

11

Computing a Sum or Product in a Loop

accumulator
• a variable used to store a value being computed in

increments during the execution of a loop

12

Computing Factorial
logical complement (negation)
• loop body executes for decreasing value of i from n

through 2
• each value of i is incorporated in the accumulating

product
• loop exit occurs when i is 1

13

Figure Function to Compute Factorial
/*
 * Computes n!
 * Pre: n is greater than or equal to zero
 */
int
factorial(int n)
{
 int i, /* local variables */
 product; /* accumulator for product computation */

 product = 1;
 / * Computes the product n × (n-1) × (n-2) × . . . ×2 × 1
*/
 for (i = n; i ＞ 1; --i) {
 product = product * i;
 }

 /* Returns function result */
 return (product);
}

14

Table Compound Assignment Operators

Statement with Simple
Assignment Operator

Equivalent Statement with
Compound Assignment
Operator

count_emp = count_emp +1;
time = time - 1;
total_time = total_time +
 times;
product = product * item;
n = n* (x + 1);

count_emp += 1;
time -= 1;
total time += time;

prouct *= item;
n *= x + 1;

15

Loop Control Components
initialization of the loop control variable

test of the loop repetition condition

change (update) of the loop control variable

the for loop supplies a designated place for each of these
three components

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2025.02.10

