
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2025.03.26

2

Make Utility and Makefile
The make utility is a software tool for managing and maintaining
computer programs consisting of many component files. The make utility
automatically determines which pieces of a large program need to be
recompiled, and issues commands to recompile them.
Make reads its instruction from Makefile (called the descriptor file) by
default.
Makefile sets a set of rules to determine which parts of a program need to
be recompiled, and issues command to recompile them.
Makefile is a way of automating software building procedure and other
complex tasks with dependencies.
Makefile contains: dependency rules, macros and suffix(or implicit)
rules.

3

/* main.c */
#include <stdio.h>
#include “functions.h”

int main()
{
 print_hello();
 printf(“\n”);
 printf("The factorial of 5 is %d\n",
factorial(5));
 return 0;
}

/* factorial.c */
#include "functions.h"

int factorial(int n)
{
 int i, fac = 1;
 if(n!=1){
 for(i=1; i<= n; i++)
 fac *= i;
 return fac;
 }
 else return 1;
}

4

/* hello.c */
#include <stdio.h>
#include "functions.h"
void print_hello()
{
 printf("Hello World!");
}

/* functions.h */
#ifndef FUNCTIONS_H
#define FUNCTIONS_H
void print_hello();
int factorial(int n);

#endif

5

Command Line Approach to Compile
gcc -c hello.c main.c factorial.c
ls *.o
factorial.o hello.o main.o
gcc -o prog factorial.o hello.o main.o
./ prog
 Hello World!
 The factorial of 5 is 120

Suppose we later modified hello.cpp, we need to:
• gcc -c hello.c
• gcc -o prog factorial.o hello.o main.o

6

Example Makefile
This is a comment line
CC=gcc
CFLAGS will be the options passed to the compiler.
CFLAGS= -c -Wall

all: prog

prog: main.o factorial.o hello.o
 $(CC) main.o factorial.o hello.o -o prog

main.o: main.c
 $(CC) $(CFLAGS) main.c

factorial.o: factorial.c
 $(CC) $(CFLAGS) factorial.c

hello.o: hello.c
 $(CC) $(CFLAGS) hello.c

clean:
 rm -rf *.o

7

Basic Makefile Structure

A rule consists of three parts, one or more targets, zero or more
dependencies, and zero or more commands in the form:
target: dependencies
<tab> commands to make target
• <tab> character MUST NOT be replaced by spaces.
• A “target” is usually the name of a file(e.g. executable or object files). It

can also be the name of an action (e.g. clean)
• “dependencies” are files that are used as input to create the target.
• Each “command” in a rule is interpreted by a shell to be executed.
• By default, make uses /bin/sh shell.
• Typing “make target” will:

Ø Make sure all the dependencies are up to date
Ø If target is older than any dependency, recreate it using the specified commands.

Dependency rules

8

Basic Makefile Structure

• By default, typing “make” creates first target in Makefile.
• Since prog depends on main.o factorial.o hello.o, all of object files must

exist and be up-to-date. make will check for them and recreating them if
necessary.

Dependency rules

Phony targets
• A phony target is one that isn't really the name of a file. It will only have

a list of commands and no dependencies.

E.g. clean:
 rm -rf *.o

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2025.03.26

