
Programming with C I
Fangtian Zhong

CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu2025.03.28

2

/* main.c */
#include <stdio.h>
#include "functions.h"

int main()
{
 print_hello();
 printf(“\n”);
 printf("The factorial of 5 is %d\n",
factorial(5));
 return 0;
}

/* factorial.c */
#include "functions.h"

int factorial(int n)
{
 int i, fac = 1;
 if(n!=1){
 for(i=1; i<= n; i++)
 fac *= i;
 return fac;
 }
 else return 1;
}

3

/* hello.c */
#include <stdio.h>
#include "functions.h"

void print_hello()
{
 printf("Hello World!");
}

/* functions.h */
#ifndef FUNCTIONS_H
#define FUNCTIONS_H

void print_hello();
int factorial(int n);

#endif

4

Example Makefile
This is a comment line
CC=gcc
CFLAGS will be the options passed to the compiler.
CFLAGS= -c -Wall

all: prog

prog: main.o factorial.o hello.o
 $(CC) main.o factorial.o hello.o -o prog

main.o: main.c
 $(CC) $(CFLAGS) main.c

factorial.o: factorial.c
 $(CC) $(CFLAGS) factorial.c

hello.o: hello.c
 $(CC) $(CFLAGS) hello.c

clean:
 rm -rf *.o prog

5

Basic Makefile Structure

By using macros, we can avoid repeating text entries and makefile
is easy to modify.
Macro definitions have the form:
• NAME = text string
• e.g. we have: CC=gcc
Macros are referred to by placing the name in either arentheses or
curly braces and preceding it with $ sign.
• E.g. $(CC) main.o factorial.o hello.o -o prog

Macros

6

Basic Makefile Structure

Internal macros are predefined in make.
“make -p” to display a listing of all the macros, suffix rules and
targets in effect for the current build.

Internal macros

Special macros
The macro @ evaluates to the name of the current target.
• E.g.
prog1 : $(objs)

$(CC) -o $@ $(objs)
is equivalent to
prog1 : $(objs)

$(CC) -o prog1 $(objs)

7

Suffix rules
A way to define default rules or implicit rules that make can use to
build a program. There are double-suffix and single-suffix.
• Suffix rules are obsolete and are supported for compatibility. Use

pattern rules (a rule contains character ‘%’) if possible.
• Double-suffix is defined by the target suffix and the source suffix .

E.g. %.o:%.c:
$(CC) $(CFLAGS) -c $<
Ø This rule tells make that .o files are made from .c files.
Ø $< is a special macro which in this case stands for a .c file that is used to

produce a .o file.

8

How Does Make Work?
The make utility compares the modification time of the target
file with the modification times of the dependency files. Any
dependency file that has a more recent modification time than
its target file forces the target file to be recreated.

By default, the first target file is the one that is built. Other
targets are checked only if they are dependencies for the first
target.

Except for the first target, the order of the targets does not
matter. The make utility will build them in the order required.

9

A New Makefile
This is a comment line
CC=gcc
CFLAGS will be the options passed to the compiler.
CFLAGS=-c –Wall
OBJECTS = main.o hello.o factorial.o
all: prog

prog: $(OBJECTS)
 $(CC) $(OBJECTS) -o prog

%.o: %.c
 $(CC) $(CFLAGS) $<

clean:
 rm -rf *.o

 rm prog

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

THE END

2025.03.28

