M

<> MONTANA

Programming with C |

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

2025.03.28 E-mail: fangtian.zhong@montana.edu

/* main.c */
#include <stdio.h>
#include "functions.h"

int main()

d
print_hello();
printf(“\n”);

printf("The factorial of 5 1s %d\n",

factorial(5));
return O;

b

/* factorial.c */
#include "functions.h"

int factorial(int n)
{
int 1, fac = 1;
if(n!=1){
for(i=1; 1<=n; 1+1)
fac *=1;
return fac;

b

else return 1;
f

/* hello.c */
#include <stdio.h>

#include "functions.h"

void print_hello()

d
printf("Hello World!");

/* functions.h */
#ifndef FUNCTIONS H
#define FUNCTIONS H

void print_hello();

int factorial(int n);

#Hendif

Example Makefile

This 1s a comment line

CC=gcc

CFLAGS will be the options passed to the compiler.
CFLAGS= -c -Wall

all: prog

prog: main.o factorial.o hello.o
$(CC) main.o factorial.o hello.o -o prog

main.o: main.c
$(CC) $(CFLAGS) main.c

factorial.o: factorial.c
$(CC) $(CFLAGSYS) factorial.c

hello.o: hello.c
$(CC) $(CFLAGS) hello.c

clean:
rm -rf *.0 prog

Basic Makefile Structure

Macros

» By using macros, we can avoid repeating text entries and makefile
IS easy to modify.

» Macro definitions have the form:
« NAME = text string
* e.g. we have: CC=gcc

» Macros are referred to by placing the name in either arentheses or
curly braces and preceding it with $ sign.
« E.g. $(CC) main.o factorial.o hello.o -o prog

Basic Makefile Structure

Internal macros
#® Internal macros are predefined in make.

» “make -p” to display a listing of all the macros, suffix rules and
targets in effect for the current build.

Special macros
» The macro @ evaluates to the name of the current target.
- E.Q.
prog1 : $(objs)
$(CC) -0 $@ %(objs)
IS equivalent to
prog1 : $(objs)
$(CC) -o prog1 $(objs)

Suffix rules

» A way to define default rules or implicit rules that make can use to

build a program. There are double-suffix and single-suffix.

« Suffix rules are obsolete and are supported for compatibility. Use
pattern rules (a rule contains character ‘%) if possible.

* Double-suffix is defined by the target suffix and the source suffix .
E.g. %.0:%.c:
$(CC) $(CFLAGS) -c $<
» This rule tells make that .o files are made from .c files.

> $<is a special macro which in this case stands for a .c file that is used to
produce a .o file.

How Does Make Work?

O The make utility compares the modification time of the target
file with the modification times of the dependency files. Any
dependency file that has a more recent modification time than
its target file forces the target file to be recreated.

O By default, the first target file is the one that is built. Other
targets are checked only if they are dependencies for the first
target.

O Except for the first target, the order of the targets does not
matter. The make utility will build them in the order required.

A New Makefile

This 1s a comment line

CC=gcc

CFLAGS will be the options passed to the compiler.
CFLAGS=-c —Wall

OBJECTS = main.o hello.o factorial.o
all: prog

prog: $(OBJECTYS)
$(CC) $(OBJECTS) -o prog

%.0: %.c
$(CC) $(CFLAGS) $<

clean:
rm -rf *.0
rm prog

M

<> MONTANA

THE END

Fangtian Zhong
CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering

2025.03.28 E-mail: fangtian.zhong@montana.edu

