
09/02/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 Procedures,
Recursion, Macro

01 Numbers, Strings,
Arrays

04 Memory
Management

03 File Management

3

Numbers, Strings,
Arrays

2025-9-2

01
Part One

4

Numbers
Numerical data is generally
represented in binary system.
Arithmetic instructions operate on
binary data.
When numbers are displayed on
screen or entered from keyboard, they
are in ASCII form.
We have converted this input data in
ASCII form to binary for arithmetic
calculations and converted the result
back to ASCII.

5

The ADD and SUB Instructions
The ADD and SUB instructions are used for performing simple
addition/subtraction of binary data in byte, word and doubleword
size, i.e., for adding or subtracting 8-bit, 16-bit, 32-bit or 64-bit
operands, respectively.
The ADD and SUB instructions have the following syntax −

• ADD/SUBdestination, source
The ADD/SUB instruction can take place between −

• Register to register
• Memory to register
• Register to memory
• Register to constant data
• Memory to constant data

6

ASCII
ASCII Representation

• In ASCII representation, decimal numbers are stored as string of ASCII characters.
• For example, the symbol value 1234 is stored as −

• 31 32 33 34H
• Where, 31H is ASCII value for ‘1’, 32H is ASCII value for ‘2’, and so on.

7

Solution

8

Strings
We have already used variable length strings in our previous examples.
The variable length strings can have as many characters as required.
Generally, we specify the length of the string by either of the two ways −

• Explicitly storing string length
• Using a sentinel character

We can store the string length explicitly by using the $ location counter
symbol that represents the current value of the location counter. In the
following example −

• msg db 'Hello, world!',0xa ;our dear string
• len equ $ - msg ;length of our dear string

$ points to the byte after the last character of the string variable msg.
Therefore, $-msg gives the length of the string. We can also write

• msg db 'Hello, world!',0xa ;our dear string
• len equ 13 ;length of our dear string

9

Strings
Alternatively, you can store strings with a trailing sentinel character
to delimit a string instead of storing the string length explicitly. The
sentinel character should be a special character that does not
appear within a string.

For example −
• message db 'Hello, world!', 0

10

String Instructions
Each string instruction may require a source operand, a destination
operand or both. For 64-bit segments, string instructions use RSI
and RDI registers to point to the source and destination operands,
respectively.

For 32-bit segments, however, the ESI and the EDI registers are
used to point to the source and destination, respectively.

11

String Instructions
There are five basic instructions for processing strings. They are −

• MOVS − This instruction moves 1 Byte, Word or Doubleword of data from
memory location to another.

• LODS − This instruction loads from memory. If the operand is of one byte, it is
loaded into the AL register, if the operand is one word, it is loaded into the AX
register and a doubleword is loaded into the EAX register.

• STOS − This instruction stores data from register (AL, AX, or EAX) to memory.
• CMPS − This instruction compares two data items in memory. Data could be of

a byte size, word or doubleword.
• SCAS − This instruction compares the contents of a register (AL, AX or EAX)

with the contents of an item in memory.

12

Examples
These instructions use the ES:RDI and DS:RSI pair of registers,
where RDI and RSI registers contain valid offset addresses that
refers to bytes stored in memory. RSI is normally associated with
DS (data segment) and RDI is always associated with ES (extra
segment).

13

Versions of String Instructions

Byte Operation Word Operation Double word
Operation

Quad word
Operation

MOVSB MOVSW MOVSD MOVSQ

LODSB LODSW LODSD LODSQ

STOSB STOSW STOSD STOSQ

CMPSB CMPSW CMPSD CMPSQ

SCASB SCASW SCASD SCASQ

14

Repetition Prefixes
The REP prefix, when set before a string instruction, for example
- REP MOVSB, causes repetition of the instruction based on a
counter placed at the RCX register. REP executes the instruction,
decreases RCX by 1, and checks whether RCX is zero. It repeats
the instruction processing until RCX is zero.

The Direction Flag (DF) determines the direction of the operation.
• Use CLD (Clear Direction Flag, DF = 0) to make the operation left

to right.
• Use STD (Set Direction Flag, DF = 1) to make the operation right to

left.

15

REP Prefix Variants
The REP prefix also has the following variations:
• REP: It is the unconditional repeat. It repeats the operation until CX

is zero.

• REPE or REPZ: It is conditional repeat. It repeats the operation
while the zero flag indicates equal/zero. It stops when the ZF indicates
not equal/zero or when CX is zero.

• REPNE or REPNZ: It is also conditional repeat. It repeats the
operation while the zero flag indicates not equal/zero. It stops when
the ZF indicates equal/zero or when CX is decremented to zero.

16

Arrays
We have already discussed that the data definition directives to the
assembler are used for allocating storage for variables. The variable could
also be initialized with hexadecimal, decimal or binary values.
For example, we can define a word variable 'months' in either of the
following way −

• MONTHS DW 12
• MONTHS DW 0CH
• MONTHS DW 0110B

The data definition directives can also be used for defining a one-
dimensional array. Let us define a one-dimensional array of numbers.

• NUMBERS DW 34, 45, 56, 67, 75, 89

17

Examples

The times directive can also
be used for multiple
initializations to the same
value. Using times, the
inventory array can be
defined as:

• inventory times 8 dw 0

18

Procedures,
Recursion, Macro

2025-9-2

02
Part Two

19

Procedures
Procedures are identified by a name. Following this name, the
body of the procedure is described which performs a well-defined
job. End of the procedure is indicated by a return statement.

Following is the syntax to define a procedure −

proc_name:
 procedure body
 ...
 ret

20

call instruction

The procedure is called from another function by using the call
instruction. The call instruction should have the name of the called
procedure as an argument as shown below −

• call proc_name

The called procedure returns the control to the calling procedure
by using the ret instruction.

21

Examples

22

Stacks Data Structure
A stack is an array-like data structure in the memory in which data can be
stored and removed from a location called the 'top' of the stack. The data
that needs to be stored is 'pushed' into the stack and data to be retrieved
is 'popped' out from the stack. Stack is a LIFO data structure, i.e., the data
stored first is retrieved last.
Assembly language provides two instructions for stack operations: PUSH
and POP. These instructions have syntaxes like −

• PUSH operand
• POP address/register

The memory space reserved in the stack segment is used for
implementing stack. The registers SS and RSP (ESP or SP) are used for
implementing the stack. The top of the stack, the last data item inserted
into the stack is pointed to by the SS:RSP register, where the SS register
points to the beginning of the stack segment and the RSP (ESP or SP)
gives the offset into the stack segment.

23

Stack Characteristics
The stack implementation has the following characteristics −

• Only words or doublewords could be saved into the stack, not a byte.
• The stack grows in the reverse direction, i.e., toward the lower memory address.
• The top of the stack points to the last item inserted in the stack; it points to the lower

byte of the last word inserted.
As we discussed about storing the values of the registers in the stack
before using them for some use; it can be done in following way −

; Save the RAX and RBX registers in the stack
PUSH RAX
PUSH RBX
; Use the registers for other purpose
MOV RAX, VALUE1
MOV RBX, VALUE2
...
MOV VALUE1, RAX
MOV VALUE2, RBX

; Restore the original values
POP RBX
POP RAX

24

Macro
Writing a macro is another way of ensuring modular programming in
assembly language.

A macro is a sequence of instructions, assigned by a name and could be used
anywhere in the program.

The Syntax for macro definition −
• %macro macro_name number_of_params
• <macro body>
• %endmacro

Where, number_of_params specifies the number parameters, macro_name specifies the
name of the macro.

The macro is invoked by using the macro name along with the
necessary parameters. When you need to use some sequence of
instructions many times in a program, you can put those instructions in a
macro and use it instead of writing the instructions all the time.

25

Macros
For example, a very common
need for programs is to write a
string of characters in the
screen.
For displaying a string of
characters, you need the
following sequence of
instructions −

lea rcx, [msg]
call printf

File Management

2025-9-2

03
Part Three

27

File Management System

File management can be accomplished using the WinAPI
functions provided by the operating system. These functions
allow you to perform various operations such as creating,
opening, reading, writing, and closing files.There are three
standard file streams −

• Standard input (stdin),
• Standard output (stdout), and
• Standard error (stderr).

28

Create or Open a File:
To create a new file or open an existing file, you can use the
CreateFile function. This function allows you to specify the file name,
desired access mode, file attributes, and other parameters. It returns
a handle to the file that you can use for subsequent operations.

HANDLE CreateFileA(
 [in] LPCSTR lpFileName,
 [in] DWORD dwDesiredAccess,
 [in] DWORD dwShareMode,
 [in, optional] LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 [in] DWORD dwCreationDisposition,
 [in] DWORD dwFlagsAndAttributes,
 [in, optional] HANDLE hTemplateFile
);

29

Create or Open a File:

30

Write

To write data to a file, you can use the WriteFile function.
Similar to ReadFile, you need to provide the file handle, a buffer
containing the data to write, the number of bytes to write, and
other required parameters. The function writes the specified
number of bytes from the buffer to the file.

BOOL WriteFile(
 [in] HANDLE hFile,
 [in] LPCVOID lpBuffer,
 [in] DWORD nNumberOfBytesToWrite,
 [out, optional] LPDWORD lpNumberOfBytesWritten,
 [in, out, optional] LPOVERLAPPED lpOverlapped
);

31

Write

32

Close
After you finish working with a file, it's important to close it using the
CloseHandle function. This function takes the file handle as a
parameter and releases any resources associated with the file.

33

Read
To read data from a file, you can use the ReadFile function. You need
to provide the file handle, a buffer to store the read data, the number
of bytes to read, and other necessary parameters. The function reads
the specified number of bytes from the file and stores them in the
provided buffer.

34

Memory
Management04

Part Four

35

Memory Management System

Memory management is primarily handled by the operating
system. However, as a developer, you can interact with the
memory management system using various WinAPI functions to
allocate, deallocate, and manipulate memory.

36

Allocate Memory
To allocate memory dynamically, you can use the HeapAlloc
function. This function allows you to specify the size of the
memory block, the desired allocation type, and other
parameters. It returns a pointer to the allocated memory
block.

DECLSPEC_ALLOCATOR LPVOID HeapAlloc(

 [in] HANDLE hHeap,

 [in] DWORD dwFlags,

 [in] SIZE_T dwBytes

);

37

Allocate Memory

38

Read or Write Memory
Once you have allocated memory, you can read from or write
to it using standard memory access instructions in assembly,
such as mov, add, sub, etc.

39

Deallocate Memory

To release the previously allocated memory, you can use the
HeapFreefunction. This function takes the pointer to the memory
block and frees the associated memory. It also allows you to
specify the desired release type and other parameters.

40

THE END

09/02/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

