
09/09/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 Section Headers

01 Optional Header

3

Optional Header

2025-8-23

01
Part One

4

Optional Header

This header contains information about the file's
preferred load address, the size of the image, and
the size of the stack required to run the file.

5

Optional Header
there are two versions of the Optional Header, one for 32-bit executables
and one for 64-bit executables.
q The size of the structure itself (or the number of members defined within the structure):

IMAGE_OPTIONAL_HEADER32 has 31 members while
IMAGE_OPTIONAL_HEADER64 only has 30 members, that additional member in the
32-bit version is a DWORD named BaseOfData which holds an RVA of the beginning of
the data section.

q The data type of some of the members: The following 5 members of the Optional Header
structure are defined as DWORD in the 32-bit version and as ULONGLONG in the 64-
bit version: ImageBase

SizeOfStackReserve
SizeOfStackCommit
SizeOfHeapReserve
SizeOfHeapCommit

6

Optional Header-64 bit
typedef struct _IMAGE_OPTIONAL_HEADER64 {
 WORD Magic;
 BYTE MajorLinkerVersion;
 BYTE MinorLinkerVersion;
 DWORD SizeOfCode;
 DWORD SizeOfInitializedData;
 DWORD SizeOfUninitializedData;
 DWORD AddressOfEntryPoint;
 DWORD BaseOfCode;
 ULONGLONG ImageBase;
 DWORD SectionAlignment;
 DWORD FileAlignment;
 WORD MajorOperatingSystemVersion;
 WORD MinorOperatingSystemVersion;
 WORD MajorImageVersion;
 WORD MinorImageVersion;
 WORD MajorSubsystemVersion;
 WORD MinorSubsystemVersion;
 DWORD Win32VersionValue;
 DWORD SizeOfImage;

 DWORD SizeOfHeaders;
 DWORD CheckSum;
 WORD Subsystem;
 WORD DllCharacteristics;
 ULONGLONG SizeOfStackReserve;
 ULONGLONG SizeOfStackCommit;
 ULONGLONG SizeOfHeapReserve;
 ULONGLONG SizeOfHeapCommit;
 DWORD LoaderFlags;
 DWORD NumberOfRvaAndSizes;
 IMAGE_DATA_DIRECTORY
DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER64,
*PIMAGE_OPTIONAL_HEADER64;

7

Fields
Magic: Microsoft documentation describes this field as an integer
that identifies the state of the image, the documentation mentions
three common values:

q 0x10B: Identifies the image as a PE32 executable.
q 0x20B: Identifies the image as a PE64 executable.
q 0x107: Identifies the image as a ROM image.

The value of this field is what determines whether the executable
is 32-bit or 64-bit.

8

Fields
MajorLinkerVersion and MinorLinkerVersion: The linker major
and minor version numbers.

SizeOfCode: This field holds the size of the code (.text) section,
or the sum of all code sections if there are multiple sections.

SizeOfInitializedData: This field holds the size of the initialized
data (.data) section, or the sum of all initialized data sections if
there are multiple sections.

9

Fields
SizeOfUninitializedData: This field holds the size of the uninitialized
data (.bss) section, or the sum of all uninitialized data sections if there
are multiple sections.
AddressOfEntryPoint: A pointer to the entry point function, relative to
the image base address. The documentation states that for program
images this relative address points to the starting address and for device
drivers it points to initialization function. For DLLs an entry point is
optional, and in the case of entry point absence the AddressOfEntryPoint
field is set to 0.
BaseOfCode: A pointer to the beginning of the code section, relative to
the image base.

10

Fields
BaseOfData (PE32 Only): A pointer to the beginning of the data section,
relative to the image base..
ImageBase: The preferred address of the first byte of the image when it
is loaded in memory. this value must be a multiple of 64K. Due to
memory protections like ASLR, and a lot of other reasons, the address
specified by this field is almost never used, in this case the PE loader
chooses an unused memory range to load the image into, after loading
the image into that address the loader goes into a process called the
relocating where it fixes the constant addresses within the image to work
with the new image base, there’s a special section that holds information
about places that will need fixing if relocation is needed, that section is
called the relocation section (.reloc), more on that in the upcoming posts.

11

Fields
SectionAlignment: The alignment of sections loaded in memory, in
bytes. Sections are aligned in memory boundaries that are multiples of
this value. The documentation states that this value defaults to the page
size for the architecture and it can’t be less than the value of
FileAlignment.
FileAlignment: The alignment of the raw data of sections in the image
file, in bytes. if the size of the actual data in a section is less than the
FileAlignment value, the rest of the chunk gets padded with zeroes to
keep the alignment boundaries. The documentation states that this value
should be a power of 2 between 512 and 64K, and if the value of
SectionAlignment is less than the architecture’s page size then the sizes
of FileAlignment and SectionAlignment must match.

12

Fields
MajorOperatingSystemVersion, MinorOperatingSystemVersion,
MajorImageVersion, MinorImageVersion, MajorSubsystemVersion
and MinorSubsystemVersion: These members of the structure
specify the major version number of the required operating system, the
minor version number of the required operating system, the major
version number of the image, the minor version number of the image,
the major version number of the subsystem and the minor version
number of the subsystem respectively.
Win32VersionValue: A reserved field that the documentation says
should be set to 0.
SizeOfImage: The size of the image file (in bytes), including all
headers. It gets rounded up to a multiple of SectionAlignment because
this value is used when loading the image into memory.

13

Fields
SizeOfHeaders: The combined size of the e_lfanew member of
IMAGE_DOS_HEADER, NT Headers, and section headers,
rounded up to a multiple of FileAlignment.

CheckSum: A checksum of the image file, it’s used to validate the
image at load time.

Subsystem: This field specifies the Windows subsystem (if any)
that is required to run the image.

14

Subsystem
Constant Value Description
IMAGE_SUBSYSTEM_UNKNOWN 0 An unknown subsystem

IMAGE_SUBSYSTEM_NATIVE 2 Device drivers and native Windows processes

IMAGE_SUBSYSTEM_WINDOWS_GUI 3 The Windows graphical user interface (GUI) subsystem

IMAGE_SUBSYSTEM_WINDOWS_CUI 4 The Windows character subsystem

IMAGE_SUBSYSTEM_OS2_CUI 5 The OS/2 character subsystem

IMAGE_SUBSYSTEM_POSIX_CUI 7 The Posix character subsystem

IMAGE_SUBSYSTEM_NATIVE_WINDOWS 8 Native Win9x driver

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI 9 Windows CE

IMAGE_SUBSYSTEM_EFI_APPLICATION 10 An Extensible Firmware Interface (EFI) application

IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12 An EFI driver with run-time services

IMAGE_SUBSYSTEM_EFI_ROM 13 An EFI ROM image

IMAGE_SUBSYSTEM_XBOX 14 XBOX

IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION 16 Windows boot application.

15

Fields
DLLCharacteristics: This field defines some characteristics of the
executable image file, like if it’s NX compatible and if it can be
relocated at run time. It exists within normal executable image files
and it defines characteristics that can apply to normal executable
files.
SizeOfStackReserve, SizeOfStackCommit, SizeOfHeapReserve
and SizeOfHeapCommit: These fields specify the size of the stack
to reserve, the size of the stack to commit, the size of the local
heap space to reserve and the size of the local heap space to
commit respectively.

16

DLLCharacteristics

Constant Value Description
0x0001 Reserved,must be zero.

0x0002 Reserved,must be zero.

0x0004 Reserved,must be zero.

0x0008 Reserved, must be zero.

IMAGE_DLLCHARACTERISTICS_HIGH_ENTROPY_VA 0x0020 Image can handle a high entropy 64-bit
virtual address space.

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE 0x0040 DLL can be relocated at load time.

IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY 0x0080 Code Integrity checks are enforced.

IMAGE_DLLCHARACTERISTICS_NX_COMPAT 0x0100 Image is NX compatible.

IMAGE_DLLCHARACTERISTICS_NO_ISOLATION 0x0200 Isolation aware,but do not isolate the image.

17

DLLCharacteristics

Constant Value Description

IMAGE_DLLCHARACTERISTICS_NO_SEH 0x0400
Does not use structured exception (SE)
handling. No SE handler may be called in
this image.

IMAGE_DLLCHARACTERISTICS_NO_BIND 0x0800 Do not bind the image.

IMAGE_DLLCHARACTERISTICS_APPCONTAINER 0x1000 Image must execute in an AppContainer.

IMAGE_DLLCHARACTERISTICS_WDM_DRIVER 0×2000 A WDM driver.

IMAGE_DLLCHARACTERISTICS_GUARD_CF 0x4000 Image supports Control Flow Guard.

IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER
_AWARE 0x8000 Terminal Server aware.

18

Fields

LoaderFlags: A reserved field that the documentation says should
be set to 0.

NumberOfRvaAndSizes: Size of the DataDirectory array.

DataDirectory: An array of IMAGE_DATA_DIRECTORY structures.
We will talk about this in the next post.

19

Optional Header

20

Fields

We can talk about some of these fields, first one being the Magic
field at the start of the header, it has the value 0x20B meaning that
this is a PE64 executable.

We can see that the entry point RVA is 0x12C4 and the code section
start RVA is 0x1000, it follows the alignment defined by the
SectionAlignment field which has the value of 0x1000.

File alignment is set to 0x200, and we can verify this by looking at
any of the sections, for example the data section:

21

Optional Header

22

Section Headers

2025-8-23

02
Part Two

23

Section Headers

This section contains information about each
section of the file, including the section's name,
size, and location in the file.

24

Sections

Sections are the containers of the actual data of the executable file,
they occupy the rest of the PE file after the headers, precisely after
the section headers.

.text: Contains the executable code of the program.

.data: Contains the initialized data.

.bss: Contains uninitialized data.

.rdata: Contains read-only initialized data.

.edata: Contains the export tables.

.idata: Contains the import tables.

.reloc: Contains image relocation information.

.rsrc: Contains resources used by the program, these include images, icons or even embedded binaries.

.tls: (Thread Local Storage), provides storage for every executing thread of the program.

25

Sections

26

Section Headers

typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 DWORD PhysicalAddress;
 DWORD VirtualSize;
 } Misc;
 DWORD VirtualAddress;
 DWORD SizeOfRawData;
 DWORD PointerToRawData;
 DWORD PointerToRelocations;
 DWORD PointerToLinenumbers;
 WORD NumberOfRelocations;
 WORD NumberOfLinenumbers;
 DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

27

Fields

q Name: First field of the Section Header, a byte array of
the size IMAGE_SIZEOF_SHORT_NAME that holds the
name of the section. IMAGE_SIZEOF_SHORT_NAME
has the value of 8 meaning that a section name can’t be
longer than 8 characters. For longer names the official
documentation mentions a work-around by filling this field
with an offset in the string table, however executable
images do not use a string table so this limitation of 8
characters holds for executable images.

28

Fields
PhysicalAddress or VirtualSize: A union defines multiple names for
the same thing, this field contains the total size of the section when it’s
loaded in memory.
VirtualAddress: The address of the first byte of the section when
loaded into memory, relative to the image base, and for object files it
holds the address of the first byte of the section before relocation is
applied.
SizeOfRawData: The size of the initialized data on disk, in bytes. It must
be a multiple of IMAGE_OPTIONAL_HEADER.FileAlignment.
SizeOfRawData and VirtualSize can be different.

29

Fields
PointerToRawData: A pointer to the first page of the section within the
file, for executable images it must be a multiple of
IMAGE_OPTIONAL_HEADER.FileAlignment.
PointerToRelocations: A file pointer to the beginning of relocation
entries for the section. It’s set to 0 for executable files.
PointerToLineNumbers: A file pointer to the beginning of COFF line-
number entries for the section. It’s set to 0 because COFF debugging
information is deprecated.
NumberOfRelocations: The number of relocation entries for the
section, it’s set to 0 for executable images.

30

Fields
NumberOfLinenumbers: The number of COFF line-number
entries for the section, it’s set to 0 because COFF debugging
information is deprecated.
Characteristics: Flags that describe the characteristics of the
section. These characteristics are things like if the section
contains executable code, contains initialized/uninitialized data,
can be shared in memory.

31

Characteristics

Flag Value Description
0x00000000 Reserved for future use.

0x00000001 Reserved for future use.

0x00000002 Reserved for future use.

0x00000004 Reserved for future use.

IMAGE_SCN_TYPE_NO_PAD 0x00000008

The section should not be padded to the next
boundary. This flag is obsolete and is replaced
by IMAGE_SCN_ALIGN_1BYTES. This is
valid only for object files.

0x00000010 Reserved for future use.

IMAGE_SCN_CNT_CODE 0x00000020 The section contains executable code.

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 The section contains initialized data.

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 The section contains uninitialized data.

IMAGE_SCN_LNK_OTHER 0x00000100 Reserved for future use.

32

Characteristics
Flag Value Description

IMAGE_SCN_LNK_INFO 0x00000200
The section contains comments or other information.
The .drectve section has this type. This is valid for
object files only.

0x00000400 Reserved for future use.

IMAGE_SCN_LNK_REMOVE 0x00000800 The section will not become part of the image. This
is valid only for object files.

IMAGE_SCN_LNK_COMDAT 0x00001000
The section contains COMDAT data.For more
information,see COMDAT Sections (Object Only).
This is valid only for object files.

IMAGE_SCN_GPREL 0x00008000 The section contains data referenced through the
global pointer (GP).

IMAGE_SCN_MEM_PURGEABLE 0x00020000 Reserved for future use.

IMAGE_SCN_MEM_16BIT 0x00020000 Reserved for future use.

IMAGE_SCN_MEM_LOCKED 0x00040000 Reserved for future use.

IMAGE_SCN_MEM_PRELOAD 0x00080000 Reserved for future use.

33

Characteristics
Flag Value Description

IMAGE_SCN_ALIGN_1BYTES 0x00100000 Align data on a 1-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_2BYTES 0x00200000 Align data on a 2-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_4BYTES 0x00300000 Align data on a 4-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_8BYTES 0x00400000 Align data on an 8-byte boundary. Valid only for object files.

IMAGE_SCN_ALIGN_16BYTES 0x00500000 Align data on a 16-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_32BYTES 0x00600000 Align data on a 32-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_64BYTES 0x00700000 Align data on a 64-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_128BYTES 0x00080000 Align data on a 128-byte boundary. Valid only for object files.

34

Characteristics

Flag Value Description

IMAGE_SCN_ALIGN_512BYTES 0x00A00000 Align data on a 512-byte boundary. Valid only for object files.

IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 Align data on a 1024-byte boundary. Valid only for object files.

IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 Align data on a 2048-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_4096BYTES 0x00D00000 Align data on a 4096-byte boundary.Valid only for object files.

IMAGE_SCN_ALIGN_8192BYTES 0x00E00000 Align data on an 8192-byte boundary. Valid only for object files.

IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 The section contains extended relocations.

IMAGE_SCN_MEM_DISCARDABLE 0x02000000 The section can be discarded as needed.

IMAGE_SCN_MEM_NOT_CACHED 0x04000000 The section cannot be cached.

IMAGE_SCN_MEM_NOT_PAGED 0x08000000 The section is not pageable.

IMAGE_SCN_MEM_SHARED 0x10000000 The section can be shared in memory.

35

Characteristics

Flag Value Description

IMAGE_SCN_MEM_SHARED 0x10000000 The section can be shared in memory.

IMAGE_SCN_MEM_EXECUTE 0x20000000 The section can be executed as code.

IMAGE_SCN_MEM_READ 0x40000000 The section can be read.

IMAGE_SCN_MEM_WRITE 0x80000000 The section can be written to.

36

Reminder
SizeOfRawData and VirtualSize can be different, and this can happen for
multiple of reasons.

SizeOfRawData must be a multiple of
IMAGE_OPTIONAL_HEADER.FileAlignment, so if the section size is less
than that value the rest gets padded and SizeOfRawData gets rounded to
the nearest multiple of IMAGE_OPTIONAL_HEADER.FileAlignment.

However when the section is loaded into memory it doesn’t follow that
alignment and only the actual size of the section is occupied. In this case
SizeOfRawData will be greater than VirtualSize.

37

Reminder
If the section contains uninitialized data, these data won’t be
accounted for on disk, but when the section gets mapped into
memory, the section will expand to reserve memory space for when
the uninitialized data gets later initialized and used.

This means that the section on disk will occupy less than it will do in
memory, in this case VirtualSize will be greater than SizeOfRawData.

38

Section Headers

39

Example
For example if we take the .text section, it has a raw address of 0x400
and a raw size of 0xE00, if we add them together we get 0x1200
which is displayed as the section end on disk.

Similarly we can do the same with virtual size and address, virtual
address is 0x1000 and virtual size is 0xD2C, if we add them together
we get 0x1D2C.

40

THE END

09/09/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

