
09/11/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 Examples

01 Data Directories

3

Data Directories

2025-8-23

01
Part One

4

Data Directories

This section contains information about the
various data directories used by the operating
system, including import and export tables,
resources, and relocations.

5

Data Directories
Data Directory is a piece of data located within one of the sections of
the PE file.

IMAGE_DATA_DIRECTORY
DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES].

IMAGE_NUMBEROF_DIRECTORY_ENTRIES is a constant defined
with the value 16, meaning that this array can have up to 16
IMAGE_DATA_DIRECTORY entries:

#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16

6

Data Directories

typedef struct _IMAGE_DATA_DIRECTORY {
 DWORD VirtualAddress;
 DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

7

Data Directories
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory
// IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7 // (X86 usage)
#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP
#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers
#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor

8

Data Directories

9

Import Directory Table
The Import Directory Table is a Data Directory located at the .idata
section.
It consists of an array of IMAGE_IMPORT_DESCRIPTOR
structures, each one of them is for a DLL.
It doesn’t have a fixed size, so the last
IMAGE_IMPORT_DESCRIPTOR of the array is zeroed-out (NULL-
Padded) to indicate the end of the Import Directory Table.

10

Summary

11

Import Directory Table

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
 union {
 DWORD Characteristics;
 DWORD OriginalFirstThunk;
 } DUMMYUNIONNAME;
 DWORD TimeDateStamp;
 DWORD ForwarderChain;
 DWORD Name;
 DWORD FirstThunk;
} IMAGE_IMPORT_DESCRIPTOR;
typedef IMAGE_IMPORT_DESCRIPTOR UNALIGNED *PIMAGE_IMPORT_DESCRIPTOR;

12

Fields
OriginalFirstThunk: RVA of the ILT.
TimeDateStamp: A time date stamp, that’s initially set to 0 if not bound
and set to -1 if bound.
q In case of an unbound import the time date stamp gets updated to the time date stamp of

the DLL after the image is bound.
q In case of a bound import it stays set to -1 and the real time date stamp of the DLL can be

found in the Bound Import Directory Table in the corresponding
IMAGE_BOUND_IMPORT_DESCRIPTOR.

ForwarderChain: The index of the first forwarder chain reference. This is
something responsible for DLL forwarding. (DLL forwarding is when a DLL
forwards some of its exported functions to another DLL.)
Name: An RVA of an ASCII string that contains the name of the imported DLL.
FirstThunk: RVA of the IAT.

13

Bound Imports
Bound import essentially means that the import table contains fixed
addresses for the imported functions. These addresses are calculated and
written during compile time by the linker.
Using bound imports is a speed optimization, it reduces the time needed
by the loader to resolve function addresses and fill the IAT, however if at
run-time the bound addresses do not match the real ones then the loader
will have to resolve these addresses again and fix the IAT.
When discussing IMAGE_IMPORT_DESCRIPTOR.TimeDateStamp, I
mentioned that in case of a bound import, the time date stamp is set to -1
and the real time date stamp of the DLL can be found in the corresponding
IMAGE_BOUND_IMPORT_DESCRIPTOR in the Bound Import Data
Directory.

14

Bound Import Data Directory
The Bound Import Data Directory is similar to the Import Directory
Table, however as the name suggests, it holds information about
the bound imports.

It consists of an array of
IMAGE_BOUND_IMPORT_DESCRIPTOR structures, and ends
with a zeroed-out IMAGE_BOUND_IMPORT_DESCRIPTOR.

15

Bound Import Data Directory

typedef struct _IMAGE_BOUND_IMPORT_DESCRIPTOR {
 DWORD TimeDateStamp;
 WORD OffsetModuleName;
 WORD NumberOfModuleForwarderRefs;
// Array of zero or more IMAGE_BOUND_FORWARDER_REF follows
} IMAGE_BOUND_IMPORT_DESCRIPTOR, *PIMAGE_BOUND_IMPORT_DESCRIPTOR;

16

Fields
TimeDateStamp: The time date stamp of the imported DLL.

OffsetModuleName: An offset to a string with the name of the imported
DLL. It’s an offset from the first IMAGE_BOUND_IMPORT_DESCRIPTOR.

NumberOfModuleForwarderRefs: The number of the
IMAGE_BOUND_FORWARDER_REF structures that immediately follow
this structure.

IMAGE_BOUND_FORWARDER_REF is a structure that’s identical to
IMAGE_BOUND_IMPORT_DESCRIPTOR, the only difference is that the
last member is reserved.

17

Import Lookup Table (ILT)
Sometimes people refer to it as the Import Name Table (INT).
Every imported DLL has an Import Lookup Table.
IMAGE_IMPORT_DESCRIPTOR.OriginalFirstThunk holds the RVA
of the ILT of the corresponding DLL.
The ILT is essentially a table of names or references, it tells the
loader which functions are needed from the imported DLL.
The ILT consists of an array of 32-bit numbers (for PE32) or 64-bit
numbers for (PE32+), the last one is zeroed-out to indicate the end of
the ILT.

18

Import Lookup Table (ILT)
Each entry of these entries encodes information as follows:
q Bit 31/63 (most significant bit): This is called the Ordinal/Name flag, it

specifies whether to import the function by name or by ordinal.
q Bits 15-0: If the Ordinal/Name flag is set to 1 these bits are used to hold the 16-

bit ordinal number that will be used to import the function, bits 30-15/62-15 for
PE32/PE32+ must be set to 0.

q Bits 30-0: If the Ordinal/Name flag is set to 0 these bits are used to hold an RVA
of a Hint/Name table.

19

Hint/Name Table

typedef struct _IMAGE_IMPORT_BY_NAME {
 WORD Hint;
 CHAR Name[1];
} IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME;

Hint: A word that contains a number, this number is used to look-
up the function, that number is first used as an index into the
export name pointer table, if that initial check fails a binary search
is performed on the DLL’s export name pointer table.

Name: A null-terminated string that contains the name of the
function to import.

20

Import Address Table (IAT)

qOn disk, the IAT is identical to the ILT, however during

bounding when the binary is being loaded into memory,

the entries of the IAT get overwritten with the addresses

of the functions that are being imported.

21

Summary
So to summarize what we discussed in this post, for every DLL the
executable is loading functions from, there will be an
IMAGE_IMPORT_DESCRIPTOR within the Image Directory Table. The
IMAGE_IMPORT_DESCRIPTOR will contain the name of the DLL, and two
fields holding RVAs of the ILT and the IAT.
The ILT will contain references for all the functions that are being imported
from the DLL. The IAT will be identical to the ILT until the executable is
loaded in memory, then the loader will fill the IAT with the actual addresses
of the imported functions.
If the DLL import is a bound import, then the import information will be
contained in IMAGE_BOUND_IMPORT_DESCRIPTOR structures in a
separate Data Directory called the Bound Import Data Directory.

22

Data Directories

23

Section Table

24

Summary

25

Example

2025-8-23

02
Part Two

26

Section Table

27

Example
For example, if we take USER32.dll and follow the RVA of its ILT
(referenced by OriginalFirstThunk), we’ll find only 1 entry (because
only one function is imported), and that entry looks like this:

This is a 64-bit executable, so the entry is 64 bits long.

As you can see, the last byte is set to 0, indicating that a Hint/Table
name should be used to look-up the function.

28

Examples

We know that the RVA of this Hint/Table name should be referenced
by the first 2 bytes, so we should follow RVA 0x29F8:

29

Example
Now we’re looking at an IMAGE_IMPORT_BY_NAME structure, first
two bytes hold the hint, which is 0x283, the rest of the structure holds
the full name of the function which is MessageBoxA.

We can verify that our interpretation of the data is correct by looking at
how PE-bear parsed it, and we’ll see the same results:

30

THE END

09/11/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

