
Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

09/16/2025

2

Overview

02 Relocation

03 Retrofitting

01 Export

3

Export

2025-8-26

01
Part One

4

Data Directories
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory
// IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7 // (X86 usage)
#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP
#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers
#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table
#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor

5

Data Directories

typedef struct _IMAGE_DATA_DIRECTORY {
 DWORD VirtualAddress;
 DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

6

Export Directory Table

typedef struct _IMAGE_EXPORT_DIRECTORY {
 DWORD Characteristics; // Reserved, must be 0.
 DWORD TimeDateStamp; //The time and date that the export data was created.
 WORD MajorVersion; //The major version number.
 WORD MinorVersion; //The minor version number.
 DWORD Name;　　 　//The address of the ASCII string that contains the name of the DLL.
 DWORD Base; 　　　　　　　　　//The starting ordinal number for exports in this image.
 //It is usually set to 1.
 DWORD NumberOfFunctions; //The number of entries in the export address table.
 DWORD NumberOfNames; //The number of entries in the name pointer table.
 DWORD AddressOfFunctions; //The address of the export address table.
 DWORD AddressOfNames; //The address of the export name pointer table.
 DWORD AddressOfNameOrdinals; //The address of the ordinal table, relative to the image base.
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

7

Export Directory Table

Virtual Address== 0x90380 Size == D4DC

8

Section Headers
typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 DWORD PhysicalAddress;
 DWORD VirtualSize;
 } Misc;
 DWORD VirtualAddress;
 DWORD SizeOfRawData;
 DWORD PointerToRawData;
 DWORD PointerToRelocations;
 DWORD PointerToLinenumbers;
 WORD NumberOfRelocations;
 WORD NumberOfLinenumbers;
 DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

9

Export Directory Table

Because we don’t run the program, we should convert the
Virtual Address (RVA) to File Address (FOA).

In this case, 00080000 (Section VirtualAddress) < 90380 <00080000+
000261BC(Virtual Size).
Therefore, it exists in .rdata section. PointerToRawData == 0x65000.
FOA = 0x90380 - 0x80000 + 0x65000 == 0x75380

10

Export Directory Table

Name: starting at 13th bytes with value 0x9416A,
which is a RVA. Its FOA == 7916A

11

Export Directory Table

typedef struct _IMAGE_EXPORT_DIRECTORY {
 DWORD Characteristics; // Reserved, must be 0.
 DWORD TimeDateStamp; //The time and date that the export data was created.
 WORD MajorVersion; //The major version number.
 WORD MinorVersion; //The minor version number.
 DWORD Name;　　 　//The address of the ASCII string that contains the name of the DLL.
 DWORD Base; 　　　　　　　　　　//The starting ordinal number for exports in this image.
 //It is usually set to 1.
 DWORD NumberOfFunctions; //The number of entries in the export address table.
 DWORD NumberOfNames; //The number of entries in the name pointer table.
 DWORD AddressOfFunctions; //The address of the export address table.
 DWORD AddressOfNames; //The address of the export name pointer table.
 DWORD AddressOfNameOrdinals; //The address of the ordinal table, relative to the image base.
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

12

NumberOfFunctions and NumberOfNames

In this case, the number of all exported functions is 62d. The
number of exported functions by name is 62d.
The number of all exported functions - The number of exported
functions by name == the number of differences.
That means other functions may not be exported or exported by
ordinal number.

13

Export Directory Table

Similarly, AddressOfFunctions FOA == 0x753A8

AddressOfNames FOA == 0x76c5c

AddressOfNameOrdinals FOA == 0x78510

14

AddressOfFunctions

AddressOfFunctions FOA == 0x753A8

q In function address table, each entry is 4 bytes. The number
of entries is determined by NumberOfFunctions.

15

Export Directory Table

For example, the RVA of the first entry is 0x0162A0.

We use the RVA of the first entry + ImageBase is the
function address.

Base address Module Address Type Symbol
merged section. exe
ucrtbased.dll

export
export
export
export
export
export
export
export

16

AddressOfNames
AddressOfNames FOA == 0x76c5c

FOA = 0x941D6 - 0x80000 + 0x65000 = 0x791D6

17

AddressOfNameOrdinals

AddressOfNameOrdinals FOA == 0x78510

18

Example

AddressOfFunctions AddressOfNameOrdinals AddressOfNames

0 0x1010 Sub 0 0x0100 0 Add

1 0x2020 Add 1 0x0000 1 Sub

2 0x3030 Div 2 0x0200 2 Div

19

Relocation

2025-8-26

02
Part Two

20

Relocation Table

Typedef struct _IMAGE_BASE_RELOCATION{
DWORD VirtualAddress
DWORD SizeOfBlock

}IMAGE_BASE_RELOCATION,*PIMAGE_BASE_RELOCATION;

21

PE

IMAGE_DIRECTORY_ENTRY_BASERELOC
DWORD VirtualAddress:0000 C000
DWORD Size:0000 0080

Typedef struct _IMAGE_BASE_RELOCATION{
DWORD VirtualAddress
DWORD SizeOfBlock
}IMAGE_BASE_RELOCATION,*PIMAGE_BASE_RELOCATION;

C000 – C000(VA of section)+4600(FOA of section)=4600

22

PE

RVA
SizeOfBlock

4 bytes
Base address: VirtualAddress

23

PE

C000 – C000(VA of section)+4600(FOA of section)=4600DWORD VirtualAddress: 0000 2000DWORD Size: 0000 000CAAA80000DWORD VirtualAddress: 0000 3000DWORD Size: 0000 0018A010A060A070A080A090A098A0A00000DWORD VirtualAddress: 0000 4000DWORD Size: 0000 004CA040A060A068A070A078A370A380A390A3A0A3B0A3C0A3D0A3E0A3F0A400A410
A420A430A440A450A460

A470A480A490A4A0A4B0
A4C0A4D0
A4E0

A4F0A500A510A5200000
DWORD VirtualAddress: 0000 9000DWORD Size: 0000 0010A008A020A038A040

24

Retrofitting
03

Part Three

25

Retrofiting

Malware retrofitting refers to the process of modifying or
updating existing malware to enhance its functionality,
stealthiness, or evasion capabilities. This practice is typically
carried out by cybercriminals or hackers to adapt their
malicious code to changing security measures, making it
more difficult for antivirus products to detect and remove the
malware.

26

Retrofiting Technique

Here are some common objectives and techniques associated
with malware retrofitting:
mEvasion of Antivirus and Security Software: Malware authors often retrofit

their code to evade detection by antivirus and security software. This may involve
altering the code's structure, changing its signatures, or using polymorphic
techniques to generate new variants that appear different to security scanners.

mPersistence: Malware often seeks to maintain a persistent presence on an
infected system. Retrofitting may involve enhancing the malware's ability to
survive system reboots, updates, or antivirus scans.

27

Retrofiting Technique

Here are some common objectives and techniques associated
with malware retrofitting:
mPayload Delivery: Malware may be retrofitted to deliver additional payloads or

modules. For example, a Trojan horse may be updated to download and execute
other malicious software, such as ransomware or keyloggers.

mData Exfiltration: Retrofitting can add data exfiltration capabilities to malware.
This enables it to steal sensitive information from infected systems and transmit it
to command and control servers controlled by cybercriminals.

28

Retrofiting Technique

Here are some common objectives and techniques associated
with malware retrofitting:
mEvasion of Sandboxing and Analysis: Malware retrofitting may include

techniques to detect if it is running in a sandbox or virtualized environment used
for security analysis. If detected, the malware may behave differently or remain
dormant to avoid detection.

mDynamic Command and Control: Retrofitting can enhance the malware's
ability to communicate with command and control servers dynamically. This
makes it harder for security researchers to track and disrupt malicious networks.

29

Retrofiting Technique

Here are some common objectives and techniques associated
with malware retrofitting:
mRootkit Functionality: Some malware is retrofitted to include rootkit

capabilities, allowing it to gain elevated privileges and hide from system
monitoring tools.

mObfuscation: Code obfuscation techniques may be applied during retrofitting to
make the malware's code more challenging to analyze and reverse-engineer.

30

Conclusion

It's important to note that malware retrofitting is an ongoing arms
race between cybercriminals and cybersecurity professionals. As
security measures improve, malware authors adapt their code to
counteract these defenses.
Consequently, cybersecurity experts continuously work to develop
better detection and prevention techniques to combat evolving
malware threats.

31

Project3
 You should develop program2.c that has to be implemented with the
following functionality:

• print a string "hello program2".
• Read encrypted program1 at the last section of program2.exe.
• Decrypt it to get the original program1.exe.
• Create the process in suspended form by using API "CreateProcess", the process to be created is program2.exe.
• Get the context of the program2.exe (ImageBase and OEP).
• Uninstaller (NtUnmapViewOfSection).
• Allocate space (by using API "VirtualAllocEx") at the specified location which is "ImageBase" of program1.exe,

and the size is the SizeOfImage of program1.exe.
• If the application space is successful, stretch the program1.exe and copy it to the space (by using

WriteProcessMemory).
• If the application space fails, but there is a relocation table, apply for space at any position, then stretch, copy,

and repair the relocation table of the program1.exe.
• Modify the Context of the program. Change the ImageBase of the Context of the program2.exe to the

ImageBase of program1.exe and change the OEP of the Context of the program2.exe to the OEP of
program1.exe.

• Set the Context and restore the main thread
• The replacement is successful

32

Project3
The source code of program1.exe is to print a string "hello program1".

mYou have to develop program1.c that print the string.
m Compile program1.c to produce program1.exe.

• We have to develop a program3.c that first encrypt the virus (in our case, it is
program1.exe) by XORing it with 0x40 and then attached the encrypted virus to the end
of program2.exe. After it is compiled, producing program3.exe.

• After running program3.exe, you will get the new program2.exe that has the encrypted
program1.exe at its last section.

• If we run the new program2.exe, it first prints "hello program2" and then prints "hello
program1".

33

THE END

09/16/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

