M 10/16/2025

MONTANA

STATE UNIVERSITY

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing

Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

@ Overview

0 Control Flow Graph

Program
Dependency Graph
@ Call Graph

>>>

Part One

Control Flow Graph

@ Control flow graphs

- The most commonly used program representation.

Program analysis o Malware analysis

@ Program representation: Basic blocks

- Z

1 A basic block in program P is a
sequence of consecutive
statements with a single entry
and a single exit point. Thus a
block has unique entry and exit
points.

s

4 h)

] Control always enters a basic
block at its entry point and exits
from its exit point. There is no
possibility of exit or a halt at any
point inside the basic block
except at its exit point. The entry
and exit points of a basic block
coincide when the block contains
only one statement.

\ D /

@ Basic blocks: Example

Example: Computing x raised to y

1

© 0 N O O

begin
int X, y, power;

float z;
scanf(“%d %d”, &x, &y);

if (y<<0)
power=-y;

else
power=y;

z=1;

10
11
12

13

14
15
16
17

while (power! = 0) {
Z=Z"X;

power = power-1;

}
if (y<<0)

z=1/z;
printf(“%f”, z);

end

@ Basic blocks: Example (contd.)

Block Lines

© 00 N O O & WO IN -

Basic blocks

2,3,4,5
6

8

9

10
11,12
14

15

16

1
6
8
9
10
11
14

15
16

@ Basic blocks: Example

Example: Computing maximum

1 main:
call CRT_INIT
push rbp
4 mov rbp, rsp
S sub rsp, 32
6 mov rcx, 100
7 mov rdx, 200
8 call print_max
9 Xor eax, eax

10

call ExitProcess

@ Basic blocks: Example (contd.)

Basic blocks

Block Lines

1 2 1 2
2 3’4’5,6’758 3 8
3 9,10 9 10

@) Control Flow Graph (CFG)

\
d A control flow graph (or flow graph) G is defined as a

finite set N of nodes and a finite set E of edges. An edge
(i, J) in E connects two nodes n; and n;in N. We often write

G= (N, E) to denote a flow graph G with nodes given by N

and edges by E.

__ N

10

@) Control Flow Graph (CFG)

»1In a flow graph of a program, each basic block becomes a node
and edges are used to indicate the flow of control between blocks.

»» An edge (i, J) connecting basic blocks b; and b; implies that control
can go from block b; to block b;.

»We also assume that there is a node labeled Start in N that has no
iIncoming edge, and another node labeled End, also in N, that has

no outgoing edge. !

11

@ CFG Example

9 N={Start, 1,2, 3, 4,5, 6,7,
8, 9, End)

@ E={(Start,1), (1, 2), (1, 3), (2,4),
(3, 4), (4,9), (5,6),(6,9),
(5,7), (7, 8), (7,9), (9, End)}

-

int X, y, power;
float z; 1
scanf(“%d %d”, &x, &y);
if (y<<0)

power=-y; |2 power=y; |3
\ Z=1; ‘4/
& 5 false

while (power!=0)
$ true

Z=Z*X; 6
power=power-1;

|
Y

if (y<<0) |7

false \ y true

z=1/z; 8

'

printf(“%f”, z); |9

End

12

@ CFG Example

- Same CFG with statements removed.

9 N={Start, 1,2, 3,4, 5, 6,7,
8, 9, End)

@ E={(Start,1), (1, 2), (1, 3), (2,4),
(3,4), (4,5), (5,6),(5,9),
(5,7), (7, 8),(7,9), (9, End)}

13

@ Paths

© Consider a flow graph G= (N, E). A sequence of k edges, k>0,
(e_1,e 2,...e k), denotes a path of length k through the flow
graph if the following sequence condition holds.

O Given that n,, Ng, N, and ng are nodes belonging to N, and 0< i<k,
if e =(n,, ng) and e,y = (n;, ng) then n, =n,. }

7 Complete path: a path from start to end

7 Subpath: a subsequence of a complete path

14

Paths: sample paths through the
% exponentiation flow graph

O Two feasible and complete paths:
« p=(Start,1,2,4,5, 6,5,7,9, End)
* p,= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End)

false

U Specified unambiguously using edges:
 py=((Start, 1), (1, 2), (2, 4), (4, 5),
(5, 6), (6,95), (5,7),(7,9), (9, End))

& Green bold edges: complete path.
% Red dashed edges: subpath.

@ Paths: infeasible paths

© A path p through a flow graph for
program P is considered feasible if there
exists at least one test case which when
iInput to P causes p to be traversed.

& p1=(Start, 1, 3,4,5,6,5,7,8,9, End)
&) p2=(Start, 1,2, 4, 5,7, 9, End)

-

int x, y, power;
float z;
input (X, y); 1

if (y<<0)

power=-y; |2 power=y; 3
\ —s /
14
& 5 false

while (power!=0)
$ true

Z=Z*X; 6
power=power-1;

|
Y

if (y<<0) |7

false \ y true

z=1/z; 8

v

output (z) 9

End

16

@ Number of paths

O There can be many distinct paths through a program. A program with
no condition contains exactly one path that begins at node Start and
terminates at node End.

O Each additional condition in the program can increase the number of
distinct paths by at least one.

©) Depending on their location, conditions can have a multiplicative

effect on the number of paths. s

o/

\
> aN
T

17

@) A Simplified Version of CFG

© Each statement is represented by a node.
* For readibility.

* Not for efficient implementation.

@ Dominator

O X dominates Y if all possible program
paths from START to Y have to pass X.

¢

v

@ Dominator
O X dominates Y if all possible program path from START to

Y has to pass X. rP—
2: i=1
1 sum=0 l
2 =1 3: while (i(<N)do [=—
3 while (i<N) do l
4 =i 4 =i+
sum=sum-+i 5: sum=sum-+i
9 .
endwhile

"6 punteum) |

» DOM(6)={1,3,6} 6: print (sum)

— 20

@ Dominator
O X strictly dominates Y if X dominates Y and X!=Y

1: sum=0
2. 1=1
1 sum=0 3: while (i<N)do <
2 =1 l
3 while (i<N)do 4 s
4 I=i+1 5: sum=sum-+i
5 sum=sum-+i

endwhile /l—\
6 print (sum) » SDOM(6)={1,3} Qarint (sum) |

21

@ Dominator

O Xis the immediate dominator of Y if X is the
last dominator of Y along a path from Startto Y. | [*4m=

l

3: while (i<N)do =

1 sum=0
2 =1 l
3 while (i <N) do 4 i=j+1
4 i=i+1 5. sum=sum-+i
5 s_um=sum+i
endwhile

6 print (sum) I > IDOM(6)={3} Q:)rint (sum)
___——

22

@ Dominator

O X post-dominates Y if every possible program
path from Y to End has to pass X.
 Strict post-dominator, immediate post-dominance.

sum=0

=1

while (i <N) do
I=i+1

3: while (i<N) do

_

5: sum=sum-+i

sum=sum-+i
endwhile

OO S~ WODND -

> SPDOM(4)={3,6)

6 print (sum) I » |IPDOM(4)=3

:

6: print (sum)

23

@ Back Edges

O Aback edge is an edge whose head dominates its tail
» Back edges often identify loops.

1: sum=0
2:i=1

l

3: while (i<N)do |-

l

4: i=i+1
5: sum=sum+i

|
'

6: print (sum)

24

Program
02 | Dependency Graph

@ Program Dependence Graph

4« The second widely used program representation.

v« Nodes are constituted by statements instead of basic blocks.

v« Two types of dependences between statements.
« Data dependence
« Control dependence

@ Data Dependence

v« Xis data dependenton Y if (1)
there is a variable v that is defined at
Y and used at X and (2) there exists
a path of nonzero length from Y to X
along which v is not re-defined.

1: sum=0
2:1=1 \

l

3: while (i<N) do

l

4 i=i+1
5: sum=sm

6: print (sum)

/

27

@ Computing Data Dependence is Hard in General

v« Aliasing
* Avariable can refer to multiple memory locations/objects.

1 intx,y, z, ...; 1 foo (ClassX x, ClassY y) {

2 int * p; 2 x.field=...;

3 X=...; 3 ...=y.field;

4 y=...; 4 }

5 p=&X; o1=new ClassX();
6 p=ptz o2=new ClassY();
7 I ok foo (01, 02);

28

@ Control Dependence

4+« Intuitively, Y is control-dependent on X iff X directly determines whether Y
executes (statements inside one branch of a predicate are usually control
dependent on the predicate).

& X i1s not strictly post-dominated by Y.

> There is a path from X to End that does
not pass Y or X==Y.

< There exists a path from Xto Y s.t. every
node in the path other than X and Y is post- dominated by Y.
dominated by Y.

> No such paths for nodes in a path

between X and Y. X

= Not post-dominated by Y

= Every node is post-

29

@ Control Dependence - Example

4« Y is control-dependent on X iff X directly determines
whether Y executes.

« Xis not strictly post-dominated by Y. 1: sum=0
* There exists a path from X to Y s.t. every node in the path other than 2 i=1
X and Y is post-dominated by Y. 4‘
— L~
1 sum=0 3: while (i<<N) do
. \\ /I
2 i=1 c !
: : & CD =3
3 while (i<N)do ©) 4: i=j+1
4 i=i+1 S: sum=sum+i)
sum=sum-+i = CD(3)=3,
S .
endwhile l

: tricky!
6 print (sum) \ 6: print (sum) 20

@ Note: Control Dependence is not Syntactically Explicit

4« Y is control-dependent on X iff X directly determines

whether Y executes.

« Xis not strictly post-dominated by Y.

* There exists a path from X to Y s.t. every node in the path other

than X and Y is post-dominated by Y.

o 1 B~ WD

N

8

=1
while (i <N) do
i=i+1
if (1%2==0)
continue

@m=sum+i

endwhile

print (sum)

1: sum=0
2:i=1

l

3: while (i<N) do

l

4: i=i+1
5: if (i%2==0)

7 sum=sum-+i

y

8: print (sum)

31

@ Control Dependence is Tricky!

4« Y is control-dependent on X iff X directly determines whether Y executes.
« X s not strictly post-dominated by Y.
* There exists a path from X to Y s.t. every node in the path other than X and

Y is post-dominated by Y.

@) Can one statement control depends on two predicates?

1 if(p1]] p2)
s1;
S2;

1 if (p1 && p2)

What if?> 2

S2;

s1;

1: ?p1

1: ?p2

N

3:82

32

@) The Use of PDG

+« A program dependence graph consists of control dependence graph
and data dependence graph.

v« Why it is so important to software reliability?
* In debugging, what could possibly induce the failure?
* In security.

———— p=getpassword();
p=getpassword();

if (p=="zhang") {

send (p); send (m);

}

33

@ Super Control Flow Graph (SCFG)

++« Besides the normal intraprocedural control flow graph, additional edges
are added connecting?

« Each call site to the beginning of the procedure it calls.
* The return statement back to the call site.

for (i=0; i <n, i++) {
t1=f(0); 0
t2=1(234);
X[i]=t1+t2+13;
}

©
int f (intv) { e
O

reture (v+1);

0 N O O A WOWDN -

—

34

>>>

Part Three

Call Graph

03

@i call Graph (CG)

2> Y Each node represents a function; each edge represents
a function invocation.

void A() {
B(); viod B() {
C(); L1: D();
} L2: D();
}
void C() {
D(); void D() {
A(); }

I E— 36

M

MONTANA

STATE UNIVERSITY

THE END

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

10/16/2025

