
Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

10/16/2025

2

Overview

02
Program

Dependency Graph

03 Call Graph

01 Control Flow Graph

3

Control Flow Graph

2025-9-15

01
Part One

4

Control flow graphs

Program analysis Malware analysis

Testing

The most commonly used program representation.

5

Program representation: Basic blocks

q A basic block in program P is a
sequence of consecutive
statements with a single entry
and a single exit point. Thus a
block has unique entry and exit
points.

q Control always enters a basic
block at its entry point and exits
from its exit point. There is no
possibility of exit or a halt at any
point inside the basic block
except at its exit point. The entry
and exit points of a basic block
coincide when the block contains
only one statement.

6

Basic blocks: Example

Example: Computing x raised to y

1 begin 10 while (power! = 0) {
2 int x, y, power; 11 z=z*x;
3 float z; 12 power = power-1;

4 scanf(“%d %d”, &x, &y); 13 }

5 if (y＜0) 14 if (y＜0)
6 power=-y; 15 z=1/z;
7 else 16 printf(“%f”, z);
8 power=y; 17 end
9 z=1;

7

Basic blocks: Example (contd.)

Basic blocks

Block Lines Entry point Exit point
1 2, 3, 4, 5 1 5
2 6 6 6
3 8 8 8
4 9 9 9
5 10 10 10
6 11, 12 11 12
7 14 14 14
8 15 15 15
9 16 16 16

8

Basic blocks: Example

Example: Computing maximum

1 main: 10 call ExitProcess
2 call _CRT_INIT
3 push rbp

4 mov rbp, rsp

5 sub rsp, 32
6 mov rcx, 100
7 mov rdx, 200
8 call print_max
9 xor eax, eax

9

Basic blocks: Example (contd.)

Basic blocks

Block Lines Entry point Exit point
1 2 1 2
2 3,4,5,6,7,8 3 8
3 9,10 9 10

10

Control Flow Graph (CFG)

q A control flow graph (or flow graph) G is defined as a

finite set N of nodes and a finite set E of edges. An edge

(i, j) in E connects two nodes ni and nj in N. We often write

G= (N, E) to denote a flow graph G with nodes given by N

and edges by E.

11

Control Flow Graph (CFG)

In a flow graph of a program, each basic block becomes a node
and edges are used to indicate the flow of control between blocks.

 An edge (i, j) connecting basic blocks bi and bj implies that control
can go from block bi to block bj.

We also assume that there is a node labeled Start in N that has no
incoming edge, and another node labeled End, also in N, that has
no outgoing edge.

12

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7,
8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4),
(3, 4), (4, 5), (5, 6), (6, 5),
(5, 7), (7, 8), (7, 9), (9, End)}

1
int x, y, power;
float z;
scanf(“%d %d”, &x, &y);
if (y＜0)

printf(“%f”, z);

13

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7,
8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4),
(3, 4), (4, 5), (5, 6), (6, 5),
(5, 7), (7, 8), (7, 9), (9, End)}

Same CFG with statements removed.

14

Paths

 Consider a flow graph G= (N, E). A sequence of k edges, k>0,
(e_1, e_2, … e_k) , denotes a path of length k through the flow
graph if the following sequence condition holds.

 Given that np, nq, nr, and ns are nodes belonging to N, and 0< i<k,
if ei = (np, nq) and ei+1 = (nr, ns) then nq = nr. }

 Complete path: a path from start to end

 Subpath: a subsequence of a complete path

15

Paths: sample paths through the
exponentiation flow graph

 Two feasible and complete paths:
• p1= (Start, 1, 2, 4, 5, 6, 5, 7, 9, End)
• p2= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End)

F Green bold edges: complete path.
F Red dashed edges: subpath.

 Specified unambiguously using edges:
• p1= ((Start, 1), (1, 2), (2, 4), (4, 5),

(5, 6), (6, 5), (5, 7), (7, 9), (9, End))

16

Paths: infeasible paths

 A path p through a flow graph for
program P is considered feasible if there
exists at least one test case which when
input to P causes p to be traversed.

 p1= (Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)

 p2= (Start, 1, 2, 4, 5, 7, 9, End)

17

Number of paths

There can be many distinct paths through a program. A program with
no condition contains exactly one path that begins at node Start and
terminates at node End.

Each additional condition in the program can increase the number of
distinct paths by at least one.

Depending on their location, conditions can have a multiplicative
effect on the number of paths.

18

A Simplified Version of CFG

 Each statement is represented by a node.
• For readibility.

• Not for efficient implementation.

19

Dominator

 X dominates Y if all possible program

paths from START to Y have to pass X.

20

Dominator

 X dominates Y if all possible program path from START to
Y has to pass X.

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1

5 sum=sum+i
 endwhile

6 print (sum)6 print (sum)

Ø DOM(6)={1,3,6}

21

Dominator

 X strictly dominates Y if X dominates Y and X!=Y

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1

5 sum=sum+i
 endwhile

6 print (sum)6 print (sum) Ø SDOM(6)={1,3}

22

Dominator

 X is the immediate dominator of Y if X is the
last dominator of Y along a path from Start to Y.

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1

5 sum=sum+i
 endwhile

6 print (sum)6 print (sum) Ø IDOM(6)={3}

23

Dominator

 X post-dominates Y if every possible program
path from Y to End has to pass X.
• Strict post-dominator, immediate post-dominance.

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1

5 sum=sum+i
 endwhile

6 print (sum)6 print (sum)

Ø SPDOM(4)={3,6}

Ø IPDOM(4)=3

24

Back Edges

 A back edge is an edge whose head dominates its tail
• Back edges often identify loops.

1: sum=0
2: i=1

3: while (i＜N) do

4: i=i+1
5: sum=sum+i

6: print (sum)

25

Program
Dependency Graph02

Part Two

26

Program Dependence Graph

 The second widely used program representation.

 Nodes are constituted by statements instead of basic blocks.

 Two types of dependences between statements.
• Data dependence
• Control dependence

27

Data Dependence

 X is data dependent on Y if (1)
there is a variable v that is defined at
Y and used at X and (2) there exists
a path of nonzero length from Y to X
along which v is not re-defined.

28

Computing Data Dependence is Hard in General

 Aliasing
• A variable can refer to multiple memory locations/objects.

1 int x, y, z, ...;
2 int * p;
3 x=...;
4 y=...;
5 p=& x;
6 p=p+z
7 ...=*p;

1 foo (ClassX x, ClassY y) {
2 x.field=...;
3 ...=y.field;
4 }

 foo (o, o);
o1=new ClassX();
o2=new ClassY();
foo (o1, o2);

29

Control Dependence
Intuitively, Y is control-dependent on X iff X directly determines whether Y
executes (statements inside one branch of a predicate are usually control
dependent on the predicate).

X is not strictly post-dominated by Y.

There exists a path from X to Y s.t. every
node in the path other than X and Y is post-
dominated by Y.

X

Y

EEvery node is post-

dominated by Y.

ENot post-dominated by YØThere is a path from X to End that does
not pass Y or X==Y.

ØNo such paths for nodes in a path
between X and Y.

30

Control Dependence - Example
Y is control-dependent on X iff X directly determines
whether Y executes.
• X is not strictly post-dominated by Y.
• There exists a path from X to Y s.t. every node in the path other than
X and Y is post-dominated by Y.

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1

5 sum=sum+i
 endwhile

6 print (sum)6 print (sum)

F CD(5)=3

F CD(3)=3,

tricky!

31

Note: Control Dependence is not Syntactically Explicit

Y is control-dependent on X iff X directly determines
whether Y executes.
• X is not strictly post-dominated by Y.
• There exists a path from X to Y s.t. every node in the path other
than X and Y is post-dominated by Y.

1 sum=0
2 i=1
3 while (i＜N) do
4 i=i+1
5 if (i%2==0)
6 continue

7 sum=sum+i
endwhile

8 print (sum)

32

Control Dependence is Tricky!
Y is control-dependent on X iff X directly determines whether Y executes.
• X is not strictly post-dominated by Y.
• There exists a path from X to Y s.t. every node in the path other than X and
Y is post-dominated by Y.

 Can one statement control depends on two predicates?

1 if (p1 || p2)
2 s1;
3 s2;

1 if (p1 && p2)
2 s1;
3 s2;

What if?

1: ?p1

1: ?p2

2: s1

3: s2

33

The Use of PDG
A program dependence graph consists of control dependence graph
and data dependence graph.

Why it is so important to software reliability?
• In debugging, what could possibly induce the failure?
• In security.

 p=getpassword();

...

send (p);

 p=getpassword();
 ...
if (p==”zhang”) {

send (m);
}

34

Super Control Flow Graph (SCFG)
Besides the normal intraprocedural control flow graph, additional edges
are added connecting?
• Each call site to the beginning of the procedure it calls.
• The return statement back to the call site.

1 for (i=0; i＜n, i++) {
2 t1=f(0);
3 t2=f(234);
4 x[i]=t1+t2+t3;
5 }
6 int f (int v) {
7 reture (v+1);
8 }

1

2

3

4

7

35

Call Graph

2025-9-15

03
Part Three

36

Call Graph (CG)
Y Each node represents a function; each edge represents
a function invocation.

void A() {
B();
C();

}

void C() {
D();
A();

}

viod B() {
L1: D();
L2: D();
}

void D() {
}

B C

A

D

37

THE END

10/16/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

