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angr

Framework for the analysis of binaries

Supports a number of architectures
Øx86, x64, MIPS, ARM, PPC, etc.

http://angr.io

https://github.com/angr
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angr issues

angr is heavily developed and continuously re-worked

Backward-compatibility is not a priority

Expect some level of frustration

Expect some things in this tutorial to be outdated
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angr Components
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Under-constrained SE
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Workflow
Load a binary
Translate to an intermediate representation
Instrument
Analyze
Examine results
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angr’s Loader: CLE

Before analyzing a program, it is necessary to load it into 
memory and parse it.
The CLE module is responsible for loading a program into 
the analysis framework. 
Ø ELF
Ø PE
Ø IDA Pro binaries
Ø Blobs

All the information is accessible from the Project object.
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angr’s IR: VEX

Binaries are lifted into VEX (Valgrind’s IR).

An intermediate representation allows for the abstraction 
of architecture-dependent features.
Ø Register names: The quantity and names of registers differ between 

architectures, but modern CPU designs hold to a common theme: 
each CPU contains several general purpose registers, a register to 
hold the stack pointer, a set of registers to store condition flags, etc.

Ø Memory access: Different architectures access memory in different 
ways. For example, ARM can access memory in both little-endian 
and big-endian mode.
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angr’s IR: VEX
Ø Memory segmentation: Some architectures, such as x86, support 

memory segmentation through the use of special segment registers. 
The IR understands such memory access mechanisms and abstracts 
them away.

Ø Instruction side-effects: Most instructions have side-effects. For 
example, most operations in Thumb mode on ARM update the 
condition flags, and stack push/pop instructions update the stack 
pointer. Tracking these side-effects in an ad hoc manner in the 
analysis would be challenging. The IR makes these side effects 
explicit.

The VEX representation is accessed using the PyVEX 
module.
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angr’s Project

The basic object that represents the current analysis.

Provides access everything else, such as the loader and 
the analysis backends.

print(proj.arch)
<Arch X86 (LE)>
print(proj.filename)
CIH.exe
print(proj.loader.main_object)
<PE Object CIH.exe, maps [0x1020000:0x10263ff]>
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project.factory-blocks

project.factory provides constructors for common objects, 
such as basic blocks.

>> block = p.factory.block(proj.entry)
>> block.pp()
1023750  mov     eax, dword ptr  fs:[0x0]
1023756  push    ebp
1023757  mov     ebp, esp
1023759  push    -0x1
102375b  push    0x10210f8
1023760  push    0x1023878
1023765  push    eax
1023766  mov     eax, dword ptr 
[0x10249bc]
102376b  mov     dword ptr  fs:[0x0], esp

1023772  mov     ecx, dword ptr [0x1021008]
1023778  sub     esp, 0x1c
102377b  mov     dword ptr [ecx], eax
102377d  mov     edx, dword ptr 
[0x10249b8]
1023783  mov     eax, dword ptr [0x1021050]
1023788  push    ebx
1023789  push    esi
102378a  push    edi
102378b  mov     dword ptr [ebp-0x18], esp
102378e  mov     dword ptr [eax], edx
1023790  call    0x102386c
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project.factory-States

A SimState contains a snapshot of the program state.
Ø Memory (state.mem)
Ø Registers (state.regs)
Ø Filesystem
Ø ...

>> state = proj.factory.entry_state()
>> state.regs.esp
<BV32 0xfffefef8>
>> state.mem[proj.entry].int.resolved
<BV32 0x1af1e9>

SimStates are immutable
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Bitvectors

Bitvectors are used to represent integers in a way that 
is consistent with how the architecture represents them.

>> bv = state.solver.BVV(0xFF, 16)
>> print(bv)
<BV16 0xff>
>> state.solver.eval(bv)
0xff
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Bitvectors

Bitvectors can be stored in memory directly, however if a 
Python integer is used, it is automatically translated into 
a bitvector.

>> state.regs.eax = state.solver.BVV(3, 32)
>> state.regs.eax
<BV32 0x3>
>> state.regs.eax = 4
>>state.regs.eax
<BV32 0x4>
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Memory

The SimState’s memory is accessed like an array
Access to a location need to be qualified by type

>> state.mem[100000].uint8_t = 0
>> state.mem[100000].uint32_t = state.solver.BVV(3, 32)

Values in memory can be retrieved using the .resolved 
(bitvector) and .concrete (Python int)

>> state.mem[100000].uint32_t.resolved
<BV32 0x3>
>> state.mem[100000].uint32_t.concrete
0x3
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Simulation Managers

Simulation Managers are responsible for producing new 
SimStates given an initial set of SimStates.
SimStates are organized in stashes.
Ø active: SimStates being executed
Ø deadended: SimStates that cannot progress
Ø unconstrained: SimStates in which the instruction pointer can be 

controlled (e.g., it has a symbolic value)
Ø unsat: SimStates whose constraints are unsatisfiable
Ø <custom> 

step() executes a basic block of the active SimStates.
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Simulation Managers

>> sm = proj.factory.simulation_manager(state)
>> sm.active
 [<SimState @ 0x14001128a>]
>> sm.step()
<SimulationManager with 1 active>
…
>> sm.step()
<SimulationManager with 2 active>
…
>> sm.step()
<SimulationManager with 4 active>



18

History

state.history allows one to access the historical execution 
path up to the current state.

Ø state.history.parent: The parent state
Ø state.history.bbl_addrs: The basic block addresses executed by 

the state
Ø state.history.jump_guards: The conditions guarding each of the 

branches that the state has encountered
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SimProcedures

SimProcedures are procedures that model calls to 
external functions, specifying the effect of the function on 
the SimState.
Ø Libraries
Ø System calls

They are also used for hooking, i.e., to associate an 
address with a SimProcedure.
Ø When the address is reached the SimProcedure is invoked

>>  angr.SIM_PROCEDURES['libc'].keys()
['strncmp',
'sscanf',
 'snprintf', …
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SimProcedures

 >> func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] 
# Func is actually a class
>> p.hook(0x10000, func())
>> p.is_hooked(0x10000)
True
>> p.hooked_by(0x10000)
<SimProcedure ReturnUnconstrained>
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Symbolic Values

Symbolic values are “placeholders” for an unknown value

Operations on symbolic values return an AST 
representing the operations (accessible with .op 
and .args)
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Symbolic Values

>> x = state.solver.BVS("x", 64)
<BV64 x_3_64>
>> x + 1
 <BV64 x_3_64 + 0x1>
>> (x + 1) / 2 * x 
<BV64 ((x_3_64 + 0x1) / 0x2) * x_3_64>
>> ((x + 1) / 2 * x).op 
'__mul__’
>> ((x + 1) / 2 * x).args
(<BV64 (x_3_64 + 0x1) / 0x2>, <BV64 x_3_64>)
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Symbolic Constraints

Comparing symbolic values will return an AST with a 
Boolean type, which represents a constraint

Constraints can be added to a solver

The solver can then be asked to evaluate the constraints 
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Symbolic Constraints

>> state.solver.add(a > b)
[<Bool a_5_8 > b_6_8>]
>> state.solver.add(a == b * 2)
[<Bool a_5_8 == (b_6_8 * 2)>]
>> state.solver.add(b > 6)
[<Bool b_6_8 > 6>]
>> state.solver.constraints
[<Bool a_5_8 > b_6_8>,<Bool a_5_8==(b_6_8 * 2)>,<Bool b_6_8 > 6>]
>> state.solver.eval(a)
0xeL
>> state.solver.eval(b)
0x7L
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Execution Engines

Execution Engines are responsible for evolving the state 
when step() is invoked on an Execution Manager.
Ø The failure engine is invoked when the previous step took us to some un-

continuable state
Ø The syscall engine is invoked when the previous step ended in a syscall
Ø The hook engine is invoked if the current address is hooked
Ø The unicorn engine is invoked when the UNICORN state option is enabled 

and there is no symbolic data in the state
Ø The VEX engine is invoked as the final fallback
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Breakpoints

angr allows one to set breakpoints and test for 
sophisticated conditions.
Ø Memory and registers reads/writes
Ø A new symbolic variable is created
Ø A call instruction is invoked
Ø ...

>> def debug_f (state):
...     print "State %s just performed a memory write!”
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_f)
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Analyses
angr provides a number of analyses:
>> p.analyses.[TAB]
p.analyses.BackwardSlice        p.analyses.CFGFast              p.analyses.Reassembler          
p.analyses.BinaryOptimizer      p.analyses.CongruencyCheck      p.analyses.reload_analyses      
p.analyses.BinDiff              p.analyses.DDG                  p.analyses.StaticHooker         
p.analyses.BoyScout             p.analyses.DFG                  p.analyses.VariableRecovery     
p.analyses.CalleeCleanupFinder  p.analyses.Disassembly          p.analyses.VariableRecoveryFast 
p.analyses.CDG                  p.analyses.GirlScout            p.analyses.Veritesting          
p.analyses.CFG                  p.analyses.Identifier           p.analyses.VFG                  
p.analyses.CFGAccurate          p.analyses.LoopFinder           p.analyses.VSA_DDG

The details about the analysis can be found in the API 
documentation
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