
Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

10/21/2025

2

angr

2025-10-2

01
Part One

3

angr

Framework for the analysis of binaries

Supports a number of architectures
Øx86, x64, MIPS, ARM, PPC, etc.

http://angr.io

https://github.com/angr

4

angr issues

angr is heavily developed and continuously re-worked

Backward-compatibility is not a priority

Expect some level of frustration

Expect some things in this tutorial to be outdated

5

angr Components

Binary
Loader

Static
Analysis
Routines

Symbolic
Execution

Engine

angr

Control-Flow Graph

Data-Flow Analysis

Value-Set Analysis

Forward Symbolic Execution

Under-constrained SE

6

Workflow
Load a binary
Translate to an intermediate representation
Instrument
Analyze
Examine results

7

angr’s Loader: CLE

Before analyzing a program, it is necessary to load it into
memory and parse it.
The CLE module is responsible for loading a program into
the analysis framework.
Ø ELF
Ø PE
Ø IDA Pro binaries
Ø Blobs

All the information is accessible from the Project object.

8

angr’s IR: VEX

Binaries are lifted into VEX (Valgrind’s IR).

An intermediate representation allows for the abstraction
of architecture-dependent features.
Ø Register names: The quantity and names of registers differ between

architectures, but modern CPU designs hold to a common theme:
each CPU contains several general purpose registers, a register to
hold the stack pointer, a set of registers to store condition flags, etc.

Ø Memory access: Different architectures access memory in different
ways. For example, ARM can access memory in both little-endian
and big-endian mode.

9

angr’s IR: VEX
Ø Memory segmentation: Some architectures, such as x86, support

memory segmentation through the use of special segment registers.
The IR understands such memory access mechanisms and abstracts
them away.

Ø Instruction side-effects: Most instructions have side-effects. For
example, most operations in Thumb mode on ARM update the
condition flags, and stack push/pop instructions update the stack
pointer. Tracking these side-effects in an ad hoc manner in the
analysis would be challenging. The IR makes these side effects
explicit.

The VEX representation is accessed using the PyVEX
module.

10

angr’s Project

The basic object that represents the current analysis.

Provides access everything else, such as the loader and
the analysis backends.

print(proj.arch)
<Arch X86 (LE)>
print(proj.filename)
CIH.exe
print(proj.loader.main_object)
<PE Object CIH.exe, maps [0x1020000:0x10263ff]>

11

project.factory-blocks

project.factory provides constructors for common objects,
such as basic blocks.

>> block = p.factory.block(proj.entry)
>> block.pp()
1023750 mov eax, dword ptr fs:[0x0]
1023756 push ebp
1023757 mov ebp, esp
1023759 push -0x1
102375b push 0x10210f8
1023760 push 0x1023878
1023765 push eax
1023766 mov eax, dword ptr
[0x10249bc]
102376b mov dword ptr fs:[0x0], esp

1023772 mov ecx, dword ptr [0x1021008]
1023778 sub esp, 0x1c
102377b mov dword ptr [ecx], eax
102377d mov edx, dword ptr
[0x10249b8]
1023783 mov eax, dword ptr [0x1021050]
1023788 push ebx
1023789 push esi
102378a push edi
102378b mov dword ptr [ebp-0x18], esp
102378e mov dword ptr [eax], edx
1023790 call 0x102386c

12

project.factory-States

A SimState contains a snapshot of the program state.
Ø Memory (state.mem)
Ø Registers (state.regs)
Ø Filesystem
Ø ...

>> state = proj.factory.entry_state()
>> state.regs.esp
<BV32 0xfffefef8>
>> state.mem[proj.entry].int.resolved
<BV32 0x1af1e9>

SimStates are immutable

13

Bitvectors

Bitvectors are used to represent integers in a way that
is consistent with how the architecture represents them.

>> bv = state.solver.BVV(0xFF, 16)
>> print(bv)
<BV16 0xff>
>> state.solver.eval(bv)
0xff

14

Bitvectors

Bitvectors can be stored in memory directly, however if a
Python integer is used, it is automatically translated into
a bitvector.

>> state.regs.eax = state.solver.BVV(3, 32)
>> state.regs.eax
<BV32 0x3>
>> state.regs.eax = 4
>>state.regs.eax
<BV32 0x4>

15

Memory

The SimState’s memory is accessed like an array
Access to a location need to be qualified by type

>> state.mem[100000].uint8_t = 0
>> state.mem[100000].uint32_t = state.solver.BVV(3, 32)

Values in memory can be retrieved using the .resolved
(bitvector) and .concrete (Python int)

>> state.mem[100000].uint32_t.resolved
<BV32 0x3>
>> state.mem[100000].uint32_t.concrete
0x3

16

Simulation Managers

Simulation Managers are responsible for producing new
SimStates given an initial set of SimStates.
SimStates are organized in stashes.
Ø active: SimStates being executed
Ø deadended: SimStates that cannot progress
Ø unconstrained: SimStates in which the instruction pointer can be

controlled (e.g., it has a symbolic value)
Ø unsat: SimStates whose constraints are unsatisfiable
Ø <custom>

step() executes a basic block of the active SimStates.

17

Simulation Managers

>> sm = proj.factory.simulation_manager(state)
>> sm.active
 [<SimState @ 0x14001128a>]
>> sm.step()
<SimulationManager with 1 active>
…
>> sm.step()
<SimulationManager with 2 active>
…
>> sm.step()
<SimulationManager with 4 active>

18

History

state.history allows one to access the historical execution
path up to the current state.

Ø state.history.parent: The parent state
Ø state.history.bbl_addrs: The basic block addresses executed by

the state
Ø state.history.jump_guards: The conditions guarding each of the

branches that the state has encountered

19

SimProcedures

SimProcedures are procedures that model calls to
external functions, specifying the effect of the function on
the SimState.
Ø Libraries
Ø System calls

They are also used for hooking, i.e., to associate an
address with a SimProcedure.
Ø When the address is reached the SimProcedure is invoked

>> angr.SIM_PROCEDURES['libc'].keys()
['strncmp',
'sscanf',
 'snprintf', …

20

SimProcedures

 >> func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained']
Func is actually a class
>> p.hook(0x10000, func())
>> p.is_hooked(0x10000)
True
>> p.hooked_by(0x10000)
<SimProcedure ReturnUnconstrained>

21

Symbolic Values

Symbolic values are “placeholders” for an unknown value

Operations on symbolic values return an AST
representing the operations (accessible with .op
and .args)

22

Symbolic Values

>> x = state.solver.BVS("x", 64)
<BV64 x_3_64>
>> x + 1
 <BV64 x_3_64 + 0x1>
>> (x + 1) / 2 * x
<BV64 ((x_3_64 + 0x1) / 0x2) * x_3_64>
>> ((x + 1) / 2 * x).op
'__mul__’
>> ((x + 1) / 2 * x).args
(<BV64 (x_3_64 + 0x1) / 0x2>, <BV64 x_3_64>)

23

Symbolic Constraints

Comparing symbolic values will return an AST with a
Boolean type, which represents a constraint

Constraints can be added to a solver

The solver can then be asked to evaluate the constraints

24

Symbolic Constraints

>> state.solver.add(a > b)
[<Bool a_5_8 > b_6_8>]
>> state.solver.add(a == b * 2)
[<Bool a_5_8 == (b_6_8 * 2)>]
>> state.solver.add(b > 6)
[<Bool b_6_8 > 6>]
>> state.solver.constraints
[<Bool a_5_8 > b_6_8>,<Bool a_5_8==(b_6_8 * 2)>,<Bool b_6_8 > 6>]
>> state.solver.eval(a)
0xeL
>> state.solver.eval(b)
0x7L

25

Execution Engines

Execution Engines are responsible for evolving the state
when step() is invoked on an Execution Manager.
Ø The failure engine is invoked when the previous step took us to some un-

continuable state
Ø The syscall engine is invoked when the previous step ended in a syscall
Ø The hook engine is invoked if the current address is hooked
Ø The unicorn engine is invoked when the UNICORN state option is enabled

and there is no symbolic data in the state
Ø The VEX engine is invoked as the final fallback

26

Breakpoints

angr allows one to set breakpoints and test for
sophisticated conditions.
Ø Memory and registers reads/writes
Ø A new symbolic variable is created
Ø A call instruction is invoked
Ø ...

>> def debug_f (state):
... print "State %s just performed a memory write!”
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_f)

27

Analyses
angr provides a number of analyses:
>> p.analyses.[TAB]
p.analyses.BackwardSlice p.analyses.CFGFast p.analyses.Reassembler
p.analyses.BinaryOptimizer p.analyses.CongruencyCheck p.analyses.reload_analyses
p.analyses.BinDiff p.analyses.DDG p.analyses.StaticHooker
p.analyses.BoyScout p.analyses.DFG p.analyses.VariableRecovery
p.analyses.CalleeCleanupFinder p.analyses.Disassembly p.analyses.VariableRecoveryFast
p.analyses.CDG p.analyses.GirlScout p.analyses.Veritesting
p.analyses.CFG p.analyses.Identifier p.analyses.VFG
p.analyses.CFGAccurate p.analyses.LoopFinder p.analyses.VSA_DDG

The details about the analysis can be found in the API
documentation

28

THE END

10/21/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

