M 2023.11.07

MONTANA

STATE UNIVERSITY

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing

Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

@ Overview

Simulate
Simulation Simulation
Procedures Managers

@ Solver Engine

Loader

@ Arch Information

import angr
import archinfo
proj = angr.Project(‘C:\\users\\defaultuser0. DESKTOP-931HL80\\Downloads\\project1-1\\Stardust.exe’)

€¢9999

arch information

€¢9999

print(proj.arch)
print(proj.entry)
print(proj.filename)
print(proj.arch.bits)

@ Loader

€699

loader

print(proj.loader)

print(proj.loader.shared objects)

print(proj.loader.min_addr)

print(proj.loader.max addr)

print(proj.loader.main_object.execstack) # sample query: does this binary have an
executable stack?

print(proj.loader.main object.pic) #sample query: 1s this binary position-independent?

print(proj.loader.all objects)
print(proj.loader.all pe objects)

@ Loader

669999

Here’s the “externs object”, which we use to provide addresses for unresolved imports and angr internals

669999

print(proj.loader.extern_object)

#This object 1s used to provide addresses for emulated syscalls
print(proj.loader.find object containing(0x400000))
print(proj.loader.main_object.entry)
print(proj.loader.main_object.min_addr)

print(proj.loader.main_object.max_addr)

@ Address

J rebased_addr
 |tis an actual address in the global address

space.
d linked_addr

|t is an address relative to the prelinked base of the binary

(the address in the table).
J relative _addr

 |tis an address relative to the object base.

@ Loader

print(proj.loader.main object.segments)

print(proj.loader.main_object.sections)

print(proj.loader.main_object.find segment containing(proj.loader.main_object.entry))
print(proj.loader.main_object.find section containing(proj.loader.main_object.entry))
print(proj.loader.main_object.imports| ‘CloseHandle’])#Get the import address for a
symbol

print(“rebased addr”, proj.loader.main_object.imports[‘CloseHandle’].rebased addr)
CloseHandle = proj.loader.find symbol(‘CloseHandle’)

print(closeHandle)

print(closeHandle.name)

print(closeHandle.owner)

print(hex(closeHandle.rebased addr))

print(hex(closeHandle.linked addr))

print(hex(closeHandle.relative addr))

print(hex(proj.loader.main object.linked base))

print(hex(proj.loader.main object.mapped base))

@ Loader

print(closeHandle.1s export)
print(closeHandle.is import)

669999

On loader, the method 1s find symbol because it performs a search operation to find the symbol.

On an individual object, the method 1s get symbol because there can only be one symbol with a given name.
main_symbols = proj.loader.main_object.symbols

print(main_symbols)

main_clHandle = proj.loader.main_object.imports[“CloseHandle”]

print(“main_clHandle 1s export?”, main clHandle.symbol.is_export)

print(“main_clHandle 1s import?”’, main_clHandle.symbol.is 1mport)
print(main_clHandle.symbol.resolvedby)

print(proj.loader.main_object.imports)
print(proj.loader.main_object.relocs)
print(proj.loader.shared objects[‘kernel32.d11’].imports)

>>>

Simulation
O 2 | Procedures

Part Two

@ Simulation Procedures

669999

Simulation Procedures

669999

stub_func = angr.SIM_ PROCEDURES[‘stubs’][‘ReturnUnconstrained’] #this 1s a Class
proj.hook(0x10000, stub func()) # hook with an instance of the class

print(proj.is_hooked(0x10000))
print(proj.hooked by(0x10000))
print(proj.unhook(0x10000))

@proj.hook(0x20000, length=5)
def my hook(state):

state.regs.rax = 1
print(proj.is_hooked(0x20000))

11

>>>

Part Three

Solver Engine
03 | X

@ Solver Engine

€999

Solver Engine

state = proj.factory.entry state()

one = state.solverBVV(1, 64)
print(one)

one hundred = state.solver.BVV (100, 64)
print(one hundred)

weird nine = state.solver.BVV(9, 27)
print(weird nine)

print(one+one hundred)

print(one hundred + 0x100)
print(one hundred - one*200)

weird nine.zero extend(64-27)

&) print(one + weird nine.zero extend(64-27)) 3

@ Solver Engine

X = state.solver.BVS(“x”, 64)
y = state.solver.BVS(“y”, 64)
print(X, y)

print(x + one)
print((x+one)/2)

print(X - y)

tree=(x+ 1)/ (y +2)
print(tree)

print(tree.op)

print(tree.args)
print(tree.args|
print(tree.args|
print(tree.args|
print(tree.args|

1.op)

].args)
.args[1].op)
].args[1].args)

S S S

14

@ Solver Engine

print(x == 1)
print(X==one)
print(x > 2)

print(x+y == one_hundred+5)
print(one hundred > 5)
print(one hundred > -5)

yes = one ==

no = one ==

maybe = x==y

print(state.solver.is_true(yes))
print(state.solver.is_false(yes))

print(state.solver.is_true(no))
print(state.solver.is_false(no))

print(state.solver.is_true(maybe))
print(state.solver.is_false(maybe))

15

@ Solver Engine

state.solver.add(x > y)
state.solver.add(y > 2)
state.solver.add(10 > x)
print(state.solver.eval(x))

#get a fresh state without constraints
state = proj.factory.entry state()

input = state.solver.BVS(‘input’, 64)
operation = (((input + 4)*3)>>1) + input
output = 200

state.solver.add(operation ==output)
print(state.solver.eval(input < 2*%*32))
print(state.satisfiable())

16

@ Solver Engine

state = proj.factory.entry state()
state.solver.add(x-y>=4)
state.solver.add(y > 0)
print(state.solver.eval(x))
print(state.solver.eval(y))
print(state.solver.eval(x+y))

17

@ Solver Engine-floating point numbers

€999

Floating point numbers

state = proj.factory.entry state()

a = state.solver.FPV (3.2, state.solver.fp.FSORT DOUBLE)
print(a)

b = state.solver.FPS(‘b’, state.solver.fp.FSORT DOUBLE)
print(b)

print(a+b)

print(a+4.4)

print(b+2<0)

state.solver.add(b+2<0)

state.solver.add(b+2>-1)

print(state.solver.eval(b))

18

@ Solver Engine

print(a.raw_to bv())

print(b.raw_to bv())

print(state.solver.BVV(0, 64).raw_to_fp())
print(state.solver.BVS(‘x’, 64).raw_to fp())

print(a.val to bv(12))

print(a.val to bv(12).val to fp(state.solver.fp.FSORT FLOAT))

19

>>>

Part Four

Simulate State
04 |

@) SimState

€699

SimState

state = proj.factory.entry state()
print(state.regs.rip)
print(state.regs.eax)

#interpret the memory at the entry point as a C int
print(state.mem[proj.entry].int.resolved)

bv=state.solver.BVV(0x1234, 32)
print(bv)

ev = state.solver.eval(bv)

print(ev)

state.regs.esi = state.solver.BVV(3, 64)
print(state.regs.esi)
state.mem[0x1000].long = 4
print(state.mem|[0x1000].long.resolved)

21

@) SimState

#copy 1sp to rbp

state.regs.rbp = state.regs.rsp

#store rdx to memory at 0x1000

state.mem[0x1000].uint64 t = state.regs.rdx

#dereference rbp

state.regs.rbp = state.mem[state.regs.rbp].uint64 t.resolved
#add rax, qword ptr [rsp+8]

state.regs.rax+=state. mem[state.regs.rsp+8].uint64 t.resolved

22

@) SimState

state = proj.factory.entry state(stdin=angr.SimkFile)
while True:

succ = state.step()

if len(succ.successors)==2:

break
state = succ.successors|0]

statel, state2 = succ.successors

print(statel)

print(state?2)

input data = statel.posix.stdin.load(0, statel.posix.stdin.size)
print(input data, statel.posix.stdin.size)

print(“input data”, statel.solver.eval(input data, cast to=bytes))

23

@) SimState

#store and load can also be used for registers

s = proj.factory.blank state()

s.memory.store(0x4000, s.solver.BVV(0x0123456789abcdef0123456789%abcdef, 128))
print(s.memory.load(0x4004, 6))

print(s.memory.load(0x4000, 4, endness=archinfo.Endness.LE))

24

@ SimState-practice

J Use load and store to read and write values In
register rax, rbx, rcx, and rdx.

J Then use solver.eval to print out their values.

@ SimState

669999

Example: enable lazy solves, an option that causes state satisfiability to be checked as
infrequently as possible.

This change to the settings will be propagated to all successor states created from this
state after this line.

669999

s.options.add(angr.options.LAZY SOLVES)

#create a new state with solves enabled
s = proj.factory.entry state(add options={angr.options.LAZY SOLVES})

#(Create a new state without simplification options enabled
s = proj.factory.entry state(remove options = angr.options.simplification)

26

@) SimState

#Create an angr state at the entry point
state = proj.factory.entry state()
successors = state.step()
#lterate over the state’s history and print each history node
for succ_state in successors:
#check the length of the state’s history again
print(len(succ_state.history))
node = succ_state.history
count=0
while node:
print(f’History node :”)
count +=1
print(node)
node = node.parent
for addr in succ_state.history.bbl addrs:
print(addr)
for kind in succ_state.history.jumpkinds:
print(kind)
for guard in succ_state.history.jump_guards:
print(guard)
print(count)

27

@ SimState

€69999

copy and merge

€eo9%¢¢

s = proj.factory.blank state()

sl =s.copy()

s2 = s.copy()
sl.mem[0x1000].uint32 t=0x41414141

s2.mem[0x1000].uint32 t= 0x42424242

merge will return a tuple. the first element 1s the merged state. the second element 1s a symbolic variable
describing a state flag. the third element 1s a boolean describing whether any merging was done
(s_merged, m, anything merged) = sl.merge(s2)

print(s_merged)

print(m)

print(anything merged)

aaaa or bbbb =s merged. mem[0x1000].uint32 t

print(‘“aaaa_or bbbb”’, aaaa or bbbb) o8

>>>

Part Five Simulation
05 Managers

@ Simulation Managers

€eY999

Simulation Managers

simgr = proj.factory.simulation manager(state)
print(simgr.active)

print(simgr.active[0])

simgr.step()

print(simgr.active)
print(simgr.active[0].regs.rip)
print(state.regs.rip)

state = proj.factory.entry state()

simgr = proj.factory.simgr(state)

print(simgr.active)

while len(simgr.active)==
simgr.step()

print(simgr.active)

simgr.run()

print(simgr)

30

@ Stash types

active

deadended

pruned

unconstrained

unsat

This stash contains the states that will be stepped by default, unless an alternate stash is specified.

A state goes to the deadended stash when it cannot continue the execution for some reason, including
no more valid instructions, unsat state of all of its successors, or an invalid instruction pointer.

When using LAZY SOLVES,states are not checked for satisfiability unless absolutely necessary.
When a state is found to be unsat in the presence of LAZY SOLVES, the state hierarchy is traversed
to identify when, in its history, it initially became unsat. All states that are descendants of that
point(which will also be unsat, since a state cannot become un-unsat) are pruned and put in this stash.

If the save unconstrained option is provided to the SimulationManager constructor, states that are
determined to be unconstrained (i.e.,with the instruction pointer controlled by user data or some
other source of symbolic data) are placed here.

If the save unsat option is provided to the SimulationManager constructor,states that are determined
to be unsatisfiable(i.e.,they have constraints that are contradictory, like the input having to be both
"AAAA" and "BBBB" at the same time) are placed here.

31

@ Exploration Techniques

¥’ DFS: Depth first search, as mentioned earlier. Keeps
only one state active at once, putting the rest in the
deferred stash until it deadends or errors.

€ Explorer: This technique implements the .explore()
functionality, allowing you to search for and avoid
addresses.

€’ LengthLimiter: Puts a cap on the maximum length of
the path a state goes through.

32

@ Exploration Techniques

¥ LoopSeer: Uses a reasonable approximation of loop counting
to discard states that appear to be going through a loop too
many times, putting them in a spinning stash and pulling them
out again if we run out of otherwise viable states.

€ ManualMergepoint: Marks an address in the program as a
merge point, so states that reach that address will be briefly
held, and any other states that reach that same point within a
timeout will be merged together.

€ MemoryWatcher: Monitors how much memory is
free/available on the system between simgr steps and stops
exploration if it gets too low.

33

@ Exploration Techniques

¥ Spiller: When there are too many states active, this
technique can dump some of them to disk in order to
keep memory consumption low.

¥ Threading: Adds thread-level parallelism to the
stepping process. This doesn't help much because of
Python's global interpreter locks, but if you have a
program whose analysis spends a lot of time in angr's

native-code dependencies (unicorn, z3, libvex) you can
seem some gains.

34

THE END

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineerin

E-mail: fzhong@montana.edu

2023.11.07

