
11/06/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

03 Source Level
Debugging

04 Kernel
Debugging

05 Packer and
Shellcode

Source-Level
Debugging03

Part Three

4

Installing Visual Studio 2022
Download it from https://visualstudio.microsoft.com/vs/older-
downloads/

5

Preparing to Compile C++ Code
Click Start. Scroll down to the
programs starting with V. Expand
the "Visual Studio 2022" section.

Click "x64 Native Tools Command
Prompt", as shown below.

6

Creating a C++ Program
In the "x64 Native Tools Command Prompt" window, execute these commands:

mkdir c:\MyApp
cd c:\MyApp
notepad MyApp.cpp

Click Yes to create a new file.
Paste in this code, as shown below.

void MyFunction(long p1, long p2, long p3)
{
 long x = p1 + p2 + p3;
 long y = 0;
 y = x / p2;
}

void main ()
{
 long a = 2;
 long b = 0;
 MyFunction(a, b, 5);
}
In Notepad, save the file.

7

Compiling a C++ Program Without Symbols
In the "x64 Native Tools Command Prompt" window, execute
these commands:

cl MyApp.cpp
dir

As shown below, the compilation process created an .exe file
and an .obj files, but no .pdb file.

8

Launching WinDbg Preview and Loading MyApp
Click the Start button and type WIN. Click "WinDbg Preview".
In WinDbg, click File, "Launch executable".
Navigate to:
C:\MyApp\MyApp.exe
and double-click it.

The app loads, and stops inside ntdll, as shown below.

9

Finding "main" symbols in MyApp
In the lower center of WinDbg, execute these commands:
x MyApp!*main*
x MyApp!*
There are no results, as shown below.

10

Show loaded modules
To see the problem, execute this command:

lm

The "MyApp" module is loaded, but it has no symbols, as
shown below.
This makes it difficult to find the MyApp code. Finally, Close
WinDbg.
This is necessary because it locks the MyApp.exe file.

11

Compiling a C++ Program with Symbols
In the "x64 Native Tools Command Prompt" window, execute
these commands:

del MyApp.obj
del MyApp.exe
cl /Zi MyApp.cpp
dir

As shown below, the compilation process created an .exe file
and two .pdb files, which contain debugging symbols.

12

Launching WinDbg Preview and Loading MyApp
In WinDbg, click File, "Launch executable".
Navigate to:
C:\MyApp\MyApp.exe
and double-click it.

The app loads, and stops inside ntdll, as shown below.

13

Finding "main" symbols in MyApp
In the lower center of WinDbg, execute this command:

x MyApp!*main*

Now it finds symbols, including MyApp!main, as shown below.

14

Setting a Breakpoint and Running To It
In the lower center of WinDbg, execute this command:

bu MyApp!main

In WinDbg, at the top left, click Go.
The app runs to the start of main(), and the top left pane shows
the C++ source code, with the breakpoint and current
instruction highlighted, as shown below.
At the lower left, notice the "Locals" pane. This shows the local
variables. Right now they contain zeroes.

15

Stepping Through the Code
In WinDbg, at the top left, click "Step Into" twice.

As shown below, the program proceeds to line 11 of the source
code. The variable a is now set to 2.

16

Stepping Through the Code
In WinDbg, at the top left, click "Step Into" several more times,
until the program executes source line 5.

The program cannot execute this instruction because of a
divide-by-zero error, as shown below.

Kernel
Debugging

2025-10-19

04
Part Four

18

User Mode and Kernel Mode
To use WinDbg Preview for kernel
debugging.

The kernel is the heart of the
operating system, and it resides in
the file ntoskrnl.exe, as shown in
the figure below, from the
"Practical Malware Analysis" book.

User mode and kernel mode

19

Installing CFF Explorer
If you are using the "Windows 10 w Tools" VM, CFF Explorer is
already installed.

If you are using some other machine, go to this URL and install
"Explorer Suite":
https://ntcore.com/?page_id=388

20

Examining ntoskrnl.exe with CFF Explorer
Launch File Explorer and navigate to C:\Windows\System32.

Right-click ntoskrnl.exe and click "Open with CFF Explorer".

In CFF Explorer, in the left pane, click "Export Directory".

As shown below, there are a lot of functions exported by
ntoskrnl.exe, including AlpcCreateSecurityContext.

21

Using BCDEdit for Local Debugging
This process enables "local" kernel-mode debugging, so you can observe
kernel routines and data but you cannot use breakpoints.
Click the Start button and type CMD. Right-click "Command Prompt" and
click "Run as administrator". Click Yes.
Execute these commands:

bcdedit /debug on
bcdedit /dbgsettings local

Restart your Windows machine.

22

Starting Kernel Debugging
Click the Start button and type WIN. Right-click "WinDbg Preview"
and click "Run as administrator". Click Yes.

In WinDbg, click File, "Attach to kernel".

In the right pane, click the Local tab, as shown below.

At the lower right, click the OK button.

23

Viewing Loaded Modules
In the lower center of WinDbg, execute this command:

lm

There are several modules loaded, starting with nt, as shown below.

nt is the kernel, a short name for "ntoskrnl.exe".

24

Viewing Loaded Modules

Click the blue nt link.

Now several more blue links appear, as shown below.

25

Viewing Loaded Modules
Click functions. Scroll back to the start of the list, as shown
below.
There are links for each letter of the alphabet, to make it
somewhat less clumsy to sort through the vast number of
functions in the kernel.
You see the functions starting with "A", including
AlpcCreateSecurityContext. Notice the command executed to
produce these list of functions in the nt module starting with
"A", as shown below.
x /D /f nt!a*

26

Using Help
In WinDbg, in the Ribbon, on the Home tab, on the right, click
"Local Help".
In the Debugger window, enter a keyword of x.

Double-click the first result: "x (Examine Symbols), as shown
below.

This is a good place to learn how to use the command-line
commands.

27

Disassembling a Function
In the lower center of WinDbg, execute this command:

uf nt!NtCreateFile

The assembly code is shown, including the addresses and raw
hex bytes, as shown below.

28

Searching Memory
In the lower center of WinDbg, execute this command:

s nt!NtCreateFile L100 0x44 0x24 0x40

The pattern is found once, as shown below.

29

Finding Strings
In the lower center of WinDbg, execute this command:

s -sa nt!NtCreateFile L100

You see all ASCII strings of length three or more, as shown
below.

30

Finding Strings
In the lower center of WinDbg, execute this command:

s -[l6]sa nt!NtCreateFile L100

You see the one ASCII string with length six or more, as
shown below.

31

Display Memory
In the lower center of WinDbg, execute this command:

db nt

This shows memory contents in hexadecimal and ASCII, as
shown below.

32

Examining a Data Structure
In the lower center of WinDbg, execute this command:

dt nt!_FILE_OBJECT

This shows the syntax of the _FILE_OBJECT data structure
used to represent an open file.
Notice the permission bytes, such as ReadAccess, and the
FileName string, as shown below.
For a more complete explanation of the _FILE_OBJECT
structure, see: FILE_OBJECT structure (wdm.h).

33

Viewing Processes
In the lower center of WinDbg, execute this command:

.tlist

You see a list of running processes, as shown below.

34

Viewing Processes
For more details about the "lsass.exe" process, execute this
command:

!process 0 0 lsass.exe

You see a few lines of data, incluing a blue address for the
"peb"--the Process Environment Block.
Click that blue address for far more information, as shown
below.

35

Viewing Devices and Drivers
In the lower center of WinDbg, execute this command:

!devnode 0 1 disk

You see a few lines of data, incluing a blue address for the
"PDO"--the Physical Device Object.
Click that blue address for more information, including the
InstancePath, which shows that I am using a VMware disk, as
shown below.

36

Disabling Debugging
Click the Start button and type CMD. Right-click "Command
Prompt" and click "Run as administrator". Click Yes.
Execute this command:

bcdedit /debug off

Restart your Windows machine.

THE END

11/06/2025

Gianforte School of Computing
Norm Asbjornson College of Engineerin

E-mail: fzhong@montana.edu

Fangtian Zhong
CSCI 591

