
Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

11/13/2025

2

Overview

02 Static Malware Analysis I

01 Malware Binary Analysis

3

Malware Binary
Analysis

2025-10-19

01
Part One

4

Malware Binary Analysis
What does the malware do
How does it do it
identify triggers
What is the purpose of the malware
Is this an instance of a known threat
or a new malware
who is the author
…

Challenges:
lack of automation
time-critical analysis
labor intensive
requires a human in the loop

Typically a stripped binary with no
debugging information.
In the case of malicious code, it is
often obfuscated and packed.
Often has embedded suicide logic
and anti-analysis logic.

01001010100101010
10101010011010101
01001010100101010
10101010011010101
01001010100101010
10101010011010101
01001010100101010
10101010011010101
10101010011010101
01001010100101010
10101010011010101

.exe

5

Malware Analysis Systems

• Malware analysis involves dissecting malware to understand how it
works, and determine its functionality, origin, and potential impact

• Malware analysis is essential for any business and infrastructure that
responds to cybersecurity incidents

• Malware analysis systems can be classified into two broad categories
• Static analysis systems (pre-execution analysis)

• Process malware without running it, and extract features to be used for malware detection
and classification

• Dynamic analysis systems (post-execution analysis)
• It involves running the malware either in a physical or virtual environment, and searching

for indicators of malicious activities

• Some references also add a class of hybrid analysis systems, that
combine static and dynamic analysis

6

Static Analysis VS Dynamic Analysis

Static Analysis
q The process of analyzing a malware sample without actually executing

it.
q Tools: VirusTotal, strings, a disassembler like angr, IDA Pro, etc.

Dynamic Analysis
q The process of analyzing malware by executing it in a controlled

environment to observe its behavior and identify its functionality. Use a
virtual machine and take snapshots.

q Tools: angr, RegShot, Process Monitor, Process Hacker, CaptureBAT.
q RAM Analysis: Mandiant's Redline, Volatility.

7

Static Malware
Analysis I02

Part Two

8

Basic Static Analysis

Basic static analysis
q View malware without looking at instructions.
q Tools: VirusTotal, strings.
q Quick and easy but fails for advanced malware and can miss

important behavior.

9

Advanced static analysis
q Reverse-engineering with a disassembler.
q Complex, requires understanding of assembly code.

Advanced Static Analysis

10

Static Analysis Systems
• Static analysis provides information about the functionality of the file, and it

produces a set of signature features (without executing the file)
• The extracted information is used to predict whether the file is malicious software
• The disadvantage of static analysis is that the “true features” of the code may be missed

• Static analysis can include:
• Analyzing PE header and sections

• PE header provides information about linked libraries and imported/exported functions, as well
as contains metadata about the executable

• Strings of characters can contain references to modified files or accessed file paths by the
executable (e.g., URLs, domain names, IP addresses, names of loaded DLLs, registry keys,
etc.)

• Search for packed/encrypted code that is used by malware developers to make their
manipulated files more difficult to analyze

• Disassembling the program – translating machine code into assembly language code
• Load the executable into a disassembler to translate it into assembly language, and obtain a

better understanding of what the program does

11

Static Features for Malware Classification
• Static features

• In Windows systems, static features are extracted from either the PE file header and
sections, or assembly language source file (obtained after disassembling the file)

• Strings – sequence of characters, related to URLs, IP addresses, accessed file paths,
registry keys, or names of modified files by the executable

• Ye et al. (2008) used extracted strings from PE files as input features to an SVM
ensemble with bagging model for malware detection

• Byte n-grams – sequence of n bytes in PE header or the assembly language code
• An n-gram is a sequence of n adjacent items in sequential data
• A large number of sequences of n bytes (n ranging from 1 to 8) are used as input features for

ML model training
• Different ML models (Decision Trees, Random Forests, Deep Belief Nets) have been

implemented using byte n-grams , e.g., by Jain and Meena (2011), Yuxin et al. (2019)
• Challenges include the large number of n-grams for each file (which often requires reducing

the dimensionality of the feature vectors)

https://dl.acm.org/doi/10.1145/3073559
https://link.springer.com/chapter/10.1007%2F978-3-642-22786-8_6
https://dl.acm.org/doi/abs/10.1007/s00521-017-3077-6

12

String

Any sequence of printable characters is a string
Strings are terminated by a null (0x00)
ASCII characters are 8 bits long

Now called ANSI
Unicode characters are 16 bits long

Microsoft calls them "wide characters"

13

String

42 41 44 00
B A D NULL Terminator

ASCII

Figure 1. ASCII representation of the string BAD

Figure 2. Unicode representation of the string BAD

42 00 41 00
B A D NULL Terminator

Unicode

44 00 00 00

14

String

Native in Linux, also available for Windows.

Finds all strings in a file 3 or more characters long.

15

Strings Command
GetLayout and SetLayout are Windows functions.
GDI32.DLL is a Dynamic Link Library

16

char *sneaky = "SOSNEAKY";
int authenticate(char *username, char *password)
{

char stored_pw[9];
stored_pw[8] = 0;
int pwfile;

// evil back d00r
if (strcmp(password, sneaky) == 0) return 1;

pwfile = open(username, O_RDONLY);
read(pwfile, stored_pw, 8);

if (strcmp(password, stored_pw) == 0) return 1;
return 0;

}

int accepted()
{

printf("Welcome to the admin console, trusted user!\n");
}
int rejected()
{

printf("Go away!");
exit(1);

}

int main(int argc, char **argv)
{

char username[9];
char password[9];
int authed;

username[8] = 0;
password[8] = 0;

printf("Username: \n");
read(0, username, 8);
read(0, &authed, 1);
printf("Password: \n");
read(0, password, 8);
read(0, &authed, 1);

authed = authenticate(username, password);
if (authed) accepted();
else rejected();

}

Example

17

Static Features for Malware Classification
• Opcode (mnemonic) n-grams – n consecutive opcodes (i.e., operational code

instructions) in the assembly language source code
• Assembly instructions are composed of an operational code and operand

• E.g., for the instruction sequence: “call sub_401BCD”, “add eax 1”, “mov ebx ebx”, the 3-
gram opcode is: CALL-ADD-MOV

• Malware samples from the same family often use the same opcodes
• Santos et al. (2013) selected the top 1,000 features using 1 or 2-gram opcodes and trained an

SVM malware classifier

• API function call – request to the OS for accessing system resources, such as
networking, security, file management, etc.

• Application Programming Interfaces (API) function calls are very discriminative features, as
they can provide key information to reveal the behavior of malware

• E.g., certain sequences of API function calls are often found in malware, but rarely in benign
files

• Ahmadi et al. (2016) used the frequency of 794 API function calls to develop an ML system for
classifying malware into families

https://www.semanticscholar.org/paper/Opcode-sequences-as-representation-of-executables-Santos-Brezo/159ba4fade07ff275d4632e998d9a50a41d7c50d
https://www.semanticscholar.org/paper/Novel-Feature-Extraction%2C-Selection-and-Fusion-for-Ahmadi-Giacinto/0e5f61c7dce101b95c62c0088a155e2773f111e7

18

Generic Detection
VirusTotal is a free online service that allows users to scan files,
URLs, and IP addresses for viruses, malware, and other
security threats using more than 70 antivirus engines and other
security tools.

https://www.virustotal.com/gui/home/upload

19

Example

20

Hashing

Static malware analysis by hashing involves calculating a
cryptographic hash of a suspicious file to determine if it
matches any known malware.
To perform static malware analysis by hashing, the following
steps can be taken:
q Obtain a suspicious file that needs to be analyzed.
q Calculate the cryptographic hash of the file using a hashing algorithm such as MD5,

SHA-1, or SHA-256.
q Compare the calculated hash value against a database of known malicious hash values.

This database could be a local repository of known malware hashes or an online
database such as VirusTotal.

q If the hash value matches a known malicious hash, the file is likely to be malware and
should be treated accordingly. If the hash value does not match any known malicious
hash, the file may still be suspicious and further analysis is needed.

21

Hashes

MD5, SHA-1 or SHA-256.
Condenses a file of any size down to a fixed-length
fingerprint.
Uniquely identifies a file well in practice.

q There are MD5 collisions but they are not common.

q Collision: two different files with the same hash.

22

HashCalc

23

Hash Uses

Label a malware file

Share the hash with other analysts to identify malware

Search the hash online to see if someone else has
already identified the file

24

Static Features for Malware Classification
• Function–call graph – is a directed graph whose vertices represent the

functions of a program, and the edges symbolize function calls
• Kinable et al. (2011) developed an approach for clustering malware based on

the structural similarities between function-call graphs
• Control–flow graph – is a directed graph in which the nodes represent

basic blocks, and the edges represent control-flow paths
• A basic block is a linear sequence of program instructions having an entry point

(the first instruction executed) and an exit point (the last instruction executed)
• The control-flow graph is a representation of all the paths that can be traversed

during a program’s execution
• Faruki et al. (2012) used a Random Forest classifier for detecting malware

using control-flow graphs of various API calls

https://www.semanticscholar.org/paper/Opcode-sequences-as-representation-of-executables-Santos-Brezo/159ba4fade07ff275d4632e998d9a50a41d7c50d
https://www.semanticscholar.org/paper/Novel-Feature-Extraction%2C-Selection-and-Fusion-for-Ahmadi-Giacinto/0e5f61c7dce101b95c62c0088a155e2773f111e7

25

THE END

2023.11.28

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

