M 11/13/2025

MONTANA

STATE UNIVERSITY

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing

Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

@ Overview

0 Malware Binary Analysis

@ Static Malware Analysis |

>>>

Part One

Malware Binary
01 Analysis

@ Malware Binary Analysis

e - » What does the malware do

10101010011010101 > How d t do it

01001010100101010 . » How does itdo |

10101010011010101 . » identify triggers

01001010100101010 R - » What is the purpose of the malware
=) (=] 10101010011010101 .

01001010100101010 - » Is this an instance of a known threat
10101010011010101 ~ oranew malware |

10101010011010101 > .
01001010100101010 . » who is the author

10101010011010101 i > ...

__

O Typically a stripped binary with no
debugging information. Challenges:

O In the case of malicious code, it is » lack of automation

> time-critical analysis
often obfuscated and packed. 5 labor intensive

O Often has embedded suicide logic » requires a human in the loop
and anti-analysis logic. 4

@ Malware Analysis Systems

- Malware analysis involves dissecting malware to understand how it
works, and determine its functionality, origin, and potential impact

« Malware analysis is essential for any business and infrastructure that
responds to cybersecurity incidents

« Malware analysis systems can be classified into two broad categories

- Static analysis systems (pre-execution analysis)

» Process malware without running it, and extract features to be used for malware detection
and classification

* Dynamic analysis systems (post-execution analysis)

* Itinvolves running the malware either in a physical or virtual environment, and searching
for indicators of malicious activities

« Some references also add a class of hybrid analysis systems, that
combine static and dynamic analysis

@ Static Analysis VS Dynamic Analysis

0 Static Analysis

1 The process of analyzing a malware sample without actually executing
it.
1 Tools: VirusTotal, strings, a disassembler like angr, IDA Pro, etc.

©) Dynamic Analysis
1 The process of analyzing malware by executing it in a controlled
environment to observe its behavior and identify its functionality. Use a
virtual machine and take snapshots.

Tools: angr, RegShot, Process Monitor, Process Hacker, CaptureBAT.
RAM Analysis: Mandiant's Redline, Volatility.

DO

Static Malware
02 Analysis |

@ Basic Static Analysis

-()-Basic static analysis

J View malware without looking at instructions.
1 Tools: VirusTotal, strings.

J Quick and easy but fails for advanced malware and can miss
important behavior.

\

@ Advanced Static Analysis

0)-Advanced static analysis

1 Reverse-engineering with a disassembler.

J Complex, requires understanding of assembly code.

@ Static Analysis Systems

 Static analysis provides information about the functionality of the file, and it
produces a set of signature features (without executing the file)
* The extracted information is used to predict whether the file is malicious software
* The disadvantage of static analysis is that the “true features” of the code may be missed

« Static analysis can include:

* Analyzing PE header and sections

* PE header provides information about linked libraries and imported/exported functions, as well
as contains metadata about the executable

« Strings of characters can contain references to modified files or accessed file paths by the
executable (e.g., URLs, domain names, |IP addresses, names of loaded DLLs, registry keys,
etc.)

« Search for packed/encrypted code that is used by malware developers to make their
manipulated files more difficult to analyze

« Disassembling the program — translating machine code into assembly language code

» Load the executable into a disassembler to translate it into assembly language, and obtain a
better understanding of what the program does 10

@ Static Features for Malware Classification

o Static features

* In Windows systems, static features are extracted from either the PE file header and
sections, or assembly language source file (obtained after disassembling the file)

° Strings — sequence of characters, related to URLs, IP addresses, accessed file paths,
registry keys, or names of modified files by the executable

* Ye et al. (2008) used extracted strings from PE files as input features to an SVM
ensemble with bagging model for malware detection

° Byte Nn-grams - sequence of n bytes in PE header or the assembly language code
* An n-gram is a sequence of n adjacent items in sequential data

» Alarge number of sequences of n bytes (n ranging from 1 to 8) are used as input features for
ML model training

 Different ML models (Decision Trees, Random Forests, Deep Belief Nets) have been
implemented using byte n-grams , e.g., by Jain and Meena (2011), Yuxin et al. (2019)

« Challenges include the large number of n-grams for each file (which often requires reducing
the dimensionality of the feature vectors)

11

https://dl.acm.org/doi/10.1145/3073559
https://link.springer.com/chapter/10.1007%2F978-3-642-22786-8_6
https://dl.acm.org/doi/abs/10.1007/s00521-017-3077-6

@ String

¥ Any sequence of printable characters is a string
Yo Strings are terminated by a null (0x00)
v ASCII characters are 8 bits long
Now called ANSI
¥ Unicode characters are 16 bits long
Microsoft calls them "wide characters”

12

1) Str

ing

/ ASCII \

B A D NULL Terminator
42 41 44 00

KFigure 1. ASCII representation of the string BAD /

-

N

Unicode \

B A D NULL Terminator
42 00 41 00 44 00 00 00

Figure 2. Unicode representation of the string BAD /

13

@i String

-0)-Native in Linux, also available for Windows.

-0)-Finds all strings in a file 3 or more characters long.

o ‘
“
7~ 0
a -
J

P
/

14

@ Strings Command

-:@:-GetLayout and SetLayout are Windows functions.
{@}GDIBZ.DLL iIs @ Dynamic Link Library

C:>strings bp6.ex_

VP3

Vi3

ts@

D$4

99.124.22.1 [

e-@

GetLayout

GDI32.DLL F

SetLayout M

M}C

Mail system DLL is invalid.!Send Mail failed to
send message. B

15

@ Example

char *sneaky = "SOSNEAKY";

int authenticate(char *username, char *password) int main(int argc, char **argv)
{ {
c%lar (sltored[gI]J\Z[g], char username[9];
isn(t)r;wf'ﬁg ’ char password[9];
’ int authed;
// evil back d0Or
if (strcmp(password, sneaky) == 0) return 1; username[8] = 0;
pwfile = open(username, O RDONLY); password[8] = 0;

read(pwfile, stored pw, 8);
printf("Username: \n");

if (stremp(password, stored pw) == 0) return 1; read(0, username, 8);
\ return 0; read(0, &authed, 1);
printf("Password: \n");
int accepted() read(0, password, 8);

read(0, &authed, 1);
printf("Welcome to the admin console, trusted user!\n"); (!)

int rejected() authed = authenticate(username, password);
. if (authed) accepted();
printf("Go away!"); else rejected();
exit(1);)

16

@ Static Features for Malware Classification

* Opcode (mnemonic) n-grams — n consecutive opcodes (i.e., operational code
instructions) in the assembly language source code
« Assembly instructions are composed of an operational code and operand

« E.g., for the instruction sequence: “call sub_401BCD”, “add eax 17, “mov ebx ebx”, the 3-
gram opcode is: CALL-ADD-MOQV

« Malware samples from the same family often use the same opcodes

« Santos et al. (2013) selected the top 1,000 features using 1 or 2-gram opcodes and trained an
SVM malware classifier

* API function call — request to the OS for accessing system resources, such as
networking, security, file management, etc.

» Application Programming Interfaces (API) function calls are very discriminative features, as
they can provide key information to reveal the behavior of malware

» E.g., certain sequences of API function calls are often found in malware, but rarely in benign
files

« Ahmadi et al. (2016) used the frequency of 794 API function calls to develop an ML system for
classifying malware into families

17

https://www.semanticscholar.org/paper/Opcode-sequences-as-representation-of-executables-Santos-Brezo/159ba4fade07ff275d4632e998d9a50a41d7c50d
https://www.semanticscholar.org/paper/Novel-Feature-Extraction%2C-Selection-and-Fusion-for-Ahmadi-Giacinto/0e5f61c7dce101b95c62c0088a155e2773f111e7

@ Generic Detection

{@:-VirusTotaI is a free online service that allows users to scan files,
URLSs, and IP addresses for viruses, malware, and other
security threats using more than /0 antivirus englnes and other

security tools. = EOE
>] VIRUSTOTAL

breaches, automatically share them with the security community,

SSSSSS {H}

https://www.virustotal.com/gui/home/upload

@ Exazm

ple

675af60cbe5382135842d4f32b383d1eadbac55d5be1d735379ad69ab6373177

be1d735379ad69ab637377
Stardust 2.EXE

Community Score

DETECTION DETAILS RELATIONS BEHAVIOR

peexe assembly runtime-modules idle direct-cpu-clock-access

675af60cbe5382f35842d4132b383d1eadbac55d5

18.00 KB
Size

COMMUNITY

64bits

Q N g

coo

(D 8 security vendors and no sandboxes flagged this file as malicious

2023-03-04 23:45:57 UTC
7 days ago

E_,ﬁ & signin m

W O X

O
O

EXE

Join the VT Community and enjoy additional community insights and crowdsourced detections, plus an API key to automate checks.

Popular threat label (1) trojan.reverseshell Threat categories trojan

Security vendors' analysis (D

Antiy-AVL @ Trojan[Backdoor]/Win64.ReverseShell
Cynet @ Malicious (score: 100)
Fortinet (D Wé4/ReverseShell.Oltr

McAfee-GW-Edition

@ Artemis

Acronis (Static ML) @ Undetected

CrowdStrike Falcon

Elastic

McAfee

Symantec

AhnLab-V3

Family labels reverseshell

Do you want to automate checks?

@ Win/malicious_confidence_70% (D)

(1) Malicious (high Confidence)

(D) Artemis!979A6C706551

(1) ML Attribute.HighConfidence

@ Undetected

19

@ Hashing

Static malware analysis by hashing involves calculating a
cryptographic hash of a suspicious file to determine if it
matches any known malware.

To perform static malware analysis by hashing, the following
steps can be taken:

1 Obtain a suspicious file that needs to be analyzed.

J Calculate the cryptographic hash of the file using a hashing algorithm such as MDS5,
SHA-1, or SHA-256.

(J Compare the calculated hash value against a database of known malicious hash values.
This database could be a local repository of known malware hashes or an online
database such as VirusTotal.

1 If the hash value matches a known malicious hash, the file is likely to be malware and
should be treated accordingly. If the hash value does not match any known malicious
hash, the file may still be suspicious and further analysis 1s needed.

20

@ Hashes

v« MD5, SHA-1 or SHA-256.

+« Condenses a file of any size down to a fixed-length
fingerprint.

v« Uniquely identifies a file well in practice.

1 There are MD5 collisions but they are not common.

] Collision: two different files with the same hash.

21

@ HashCalc

H HashCalc

D ata Format:

Data:

[~ HMAC

| File _v_l |C: \Users\student\Desktop\p3.pcap

Key Format: Key:

l Textsting v

v MD5

[~ MD4

v SHAT
[~ SHA256

52583b5e2c33d13c046315181fd7b23b

391d4e880832ddbaaebadb8040738abb3f163134

@ Hash Uses

v« Label a malware file
+« Share the hash with other analysts to identify malware

L« Search the hash online to see if someone else has
already identified the file

A\ J

23

@ Static Features for Malware Classification

* Function—call graph — is a directed graph whose vertices represent the
functions of a program, and the edges symbolize function calls

« Kinable et al. (2011) developed an approach for clustering malware based on
the structural similarities between function-call graphs
« Control-flow graph - is a directed graph in which the nodes represent
basic blocks, and the edges represent control-flow paths

» A basic block is a linear sequence of program instructions having an entry point
(the first instruction executed) and an exit point (the last instruction executed)

* The control-flow graph is a representation of all the paths that can be traversed
during a program’s execution

« Faruki et al. (2012) used a Random Forest classifier for detecting malware
using control-flow graphs of various API calls

24

https://www.semanticscholar.org/paper/Opcode-sequences-as-representation-of-executables-Santos-Brezo/159ba4fade07ff275d4632e998d9a50a41d7c50d
https://www.semanticscholar.org/paper/Novel-Feature-Extraction%2C-Selection-and-Fusion-for-Ahmadi-Giacinto/0e5f61c7dce101b95c62c0088a155e2773f111e7

M

MONTANA

STATE UNIVERSITY

THE END

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

2023.11.28

