
Malicious Code 
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing 
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

11/20/2025



2

Dynamic Malware 
Analysis

2025-10-19

01
Part One



3

What is Dynamic Analysis?

q Help us to understand 
the program behavior.

3

1

q Allow the malware to 
run.

2

q Complement 
static analysis.



4

Dynamic Analysis

m Executing target binary 
and observing its behavior.

m Executing target binary 
and using a debugger to 
analyze internal states.           

Basic  dynamic  
analys is

Advanced dynamic  
analys is



5

Basic Dynamic Analysis
Monitered execution of a program in order to perform analysis.
Often performed after static analysis is done.

Advantages

• Efficient way to determine program functionality.
• Able to check file activity, process creation, 

network activity, etc. 

Disadvantages

• Non-functional paths may be explored. 



6

Executing the Malware

In most cases, you can just double-click the “exe” file.
ØYou may want to run it from the command-line as well.

What if the extension is not “exe”?
ØYou can change it. Verify if it is a PE file using a PE parser.

What if it is a DLL?
ØYou can run a DLL using the rundll32 program.
ØFormat: C:\> rundll32.exe <name>.dll



7

Dynamic Analysis Systems
Dynamic analysis is run in a safe environment on dedicated physical or 
virtual machines (in order not to expose the users’ system to unnecessary 
risks)

m Physical machines are set up on isolated networks, disconnected from the Internet or 
any other network, to prevent malware from spreading

m Virtual machines emulate the functionality of a physical computer, where the OS 
running on the virtual machine is isolated from the host OS
Ø One limitation is that some malware can detect when they are running in a virtual 

machine, and they will execute differently than when in a physical machine
m A related term is sandbox, referring to a physical or virtual environment for running 

malware, which isolates executables from other system resources and applications.
Ø Although they share characteristics with physical and virtual machines, sandboxes 

can be more limited (e.g., they can run in the browser), while physical and virtual 
machines always act as a complete system

Ø For example, online sandboxes are websites where one can submit a sample file 
and receive a report about its behavior



8

Dynamic Features for Malware Classification
Dynamic features are extracted from the execution of malware at runtime

m Memory and registers usage -   values stored in the memory and different 
registers during the execution can distinguish benign from malicious programs 
Ø Ghiasi et al. (2015) monitored the memory content and register values before and 

after each invoked API call
Ø They used similarity scores between the benign and malicious files in a training set 

to train an ML model for malware detection
m Instruction traces - sequence of processor instructions called during the 

execution of a program 
Ø Dynamic instruction traces are more robust indicators of the program’s behavior 

than static traces, since compression and encryption can obfuscate code 
instructions from static analysis

Ø Carlin et al. (2017) analyzed traces of opcodes to detect malware by Random 
Forest and Hidden Markov Model classifiers



9

Dynamic Features for Malware Classification
m Network traffic -   monitoring the traffic entering and exiting the network can 

provide helpful information to detect malicious behavior 
Ø E.g., when malware infects a host machine, it may establish communication 

with an external server to download updates, other malware, or leak private and 
sensitive information from the host machine 

Ø Bekerman et al. (2015) extracted 972 features from the network traffic, and 
used them for developing Decision Tree and Random Forest malware 
classifiers

m API call traces - traces for accessing file systems, devices, processes, 
threads and error handling, and also to access functions such as the 
Windows registry, manage user accounts, etc. 
Ø Uppal et al. (2014) proposed traditional ML-based classifiers using n-grams of 

features extracted from traces of invoked API calls.



10

Sandboxing 
Sandboxing is a security technique used to isolate running 
applications from the rest of the system. It works by creating a 
virtual environment, or sandbox, in which an application or 
process can run without affecting other parts of the system.
The sandboxed environment provides a controlled and secure 
environment for testing or running potentially risky applications. 
If the application performs any suspicious behavior, it will be 
confined within the sandbox and prevented from affecting other 
parts of the system.



11

Sandboxing 
Sandboxing can be implemented in various ways, such as virtual 
machines, containerization, or operating system-level 
sandboxes. For example, a virtual machine can be used to 
create a separate operating system environment within the host 
operating system, while containerization can be used to create 
isolated environments for individual applications or processes.



12

Sandboxes 
All-in-one software solutions to analyze the execution of a 
program.
Provides security mechanisms for running untrusted programs 
in a safe environment.
Lets you moniter behavior/changes to the system.
The “real” system remains isolated-so, it does not get infected.



13

Sandboxes 

Usually use virtual components
ØSimulates network services to allow program to execute 

as it “normally” would

Sandboxes for malware analysis
ØThere are many free and commercial versions available
ØLets you analyze a variety of file types: EXE, PDF, Office 

documents, URLs, etc.



14

Sandboxes-drawbacks  

May run the EXE w/o command line arguments.

Execution may wait for response from C2.

Malware may find out that it is running in a sandbox .
Øan anti-analysis technique
Øin that case, the malware may change its behavior

Often the environment is not properly setup.



15

Sandbox-Example:https://any.run/ 



16

Moniter System Activity

Process Moniter
q Allow monitering of registry, file system, network, process, and 

thread activities.
q Moniter all system calls
q Captures a lot of data (>50,000 events in a minute)
q Use RAM to capture events

• can easily crash a VM - so, run for a limited amount of time
q Not a reliable tool for network activities

• so other tools needs to be used



17

Running Malware-Process Moniter



18

Running Malware-Process Moniter 

To narrow the result, use filtering
You may want to filter on:
Executables running on the system
System call (such as RegSetValue, Create File, WriteFile, etc.)

Note: Filtering does not prevent from 
consuming too much memory though.



19

Example1-Track File and Registry Changes 
Let’s say, you need to track access to the registry key 
HKEY_CURRENT_USER\Software\test and file 
c:\ps\procmon_example.txt.
When Process Monitor starts, it begins capturing all events 
according to the default filters.

qStep 1. Stop capturing events by 
unchecking the option File > Capture 
Events (Ctrl+E).

qStep 2. Clear the current ProcMon log 
(Edit > Clear Display).



20

Example1-Track File and Registry Changes 
Let’s say, you need to track access to the registry key 
HKEY_CURRENT_USER\Software\test and file 
c:\ps\procmon_example.txt.

qStep 3. Now you need to configure the 
Process Monitor filters (Filter > Filter).
qStep 4. Create a filter for monitoring 

access to the registry key: Path > 
contains > \SOFTWARE\test > Include. 
qStep 5. Click Add to add a new filter to 

the list



21

Example1-Track File and Registry Changes 
Let’s say, you need to track access to the registry key 
HKEY_CURRENT_USER\Software\test and file 
c:\ps\procmon_example.txt.

qStep 6. Now add a file access event filter: Path > is > c:\ps\procmon_example.txt 
> Include.
qStep 7. Make sure the following options are enabled in the toolbar: Show 

Registry Activity, Show File System Activity.
• The Show Network Activity and Show Process, and Threads Activity options can 

be disabled.



22

Example1-Track File and Registry Changes  
Let’s say, you need to track access to the registry key 
HKEY_CURRENT_USER\Software\test and file 
c:\ps\procmon_example.txt.

qStep 8. Start event monitoring File > Capture Event.
qStep 9. Let’s create a reg parameter key in the specified registry key using the 

command prompt:
• reg add hkcu\software\test /v Path /t REG_EXPAND_SZ /d ^%systemroot^%

qStep 10. Let’s write some data into the procmon_example.txt file using the 
command prompt:

• echo %date%>>c:\ps\procmon_example.txt
qStep 11. And using PowerShell:

• Get-Process|out-file C:\ps\procmon_example.txt



23

Example1-Track File and Registry Changes  
Let’s say, you need to track access to the registry key 
HKEY_CURRENT_USER\Software\test and file 
c:\ps\procmon_example.txt.

q It contains events for creating a 
registry key by the reg.exe process 
(Operation > RegCreateKey).
q It also contains events of creation 

(Create File) and writing to a file 
(WriteFile) by the processes 
cmd.exe and powershell.exe.



24

Example2-Exclude System Process  
Let’s say, exclude msmpeng.exe (Antimalware Service 
Executable). This is the core process of the antimalware 
detection engine in Windows Defender.

qTo exclude the events of this process from the ProcMon log, right-click on the 
process name msmpeng.exe and select Exclude.



25

Example2-Exclude System Process  
Let’s say, exclude msmpeng.exe (Antimalware Service 
Executable). This is the core process of the antimalware 
detection engine in Windows Defender.

qThis process will be added to the ProcMon filter with the Exclude value. It means 
that the ProcMon log won’t display any activity from this process.



26

Process Explorer
Windows task manager and system monitoring tool
It moniters all running processes
Free
Shows which propram in the system has a specific 
file/directory open
Provides insight into the processes that are running 
on a system
• Lists active processes, DLLs loaded by a process, process 

properties, system information.



27

Process Explorer Vs. Process Moniter 
Process Explorer
• Shows current state of each process
• Shows files, registry keys and thread loaded by each running process

Process Moniter
• In addition to monitoring, it logs process information- all events
• Logs show the file, registry, network, etc. the process attempted to use 

- successful or not
• “Access Denied” events also appear



28

Monitoring Network Activities

Most malware will need to communicate with external 
services/entities.
Download additional malware, files
Exchange/obtain keys for encryption
C2-Command and Control: Receive instructions and check-in
Extract data
Infect other machines

Question: Do we allow them access to network?

WHY?



29

Faking a Network 

It is too risky to allow a malware to access the network.
Faking a network allows us to find out how/what is 
communicated.
Important: Faking requires that the malware does not 
realize it is executing on a virtualized environment.



30

Faking a Network-FakeNet 

An open source tool.

Allow users to intercept and redirect all or specific 
network traffic.

You can identify malware functionality and capture 
network signatures.



31

Faking a Network-FakeNet

1. Fakenet takes over DNS on port 53.
2. It listens to the TCP ports 80, 443 and 25.
3. It supports DNS, HTTP and SSL protocols.



32

FakeNet-Use
1. Stop most programs that connect to the Internet prior to running 
Fakenet.
2. Just run the program you want to analyze.
3. Still get some noise from Windows itself and maybe background 
processes that you cannot just terminate.



33

The Eureka Workflow 

Eureka’s 
Unpacker

Packed 
Binary

Trace 
Malware 
syscalls 
in VM

Favorable 
execution 

point

Syscall 
trace

Heuristic based
offline analysis

Unpacked
Binary

Disassembly
IDA-Pro

Statistics based
Evaluator

Disassembly
IDA-Pro

UnPacked 
.ASM

Packed 
.ASM

Statistics 
based

Evaluator

Unpack 
Evaluation

Raw unpacked
Executable

•Unknown OEP
•No debug information
•Unresolved library calls
•Snapshot of data segment
•Unreachable code
•Loss of structures



34

Questions

Final Exam



35

THE END

11/20/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing 
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu


