
Fangtian Zhong
CSCI 591

8/26/2025

Malicious Code
Analysis

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

1 Registers

3 Calling Conv.

2 Basic Syntax

3

Registers

2025-8-26

02
Part Two

4

8086 Registers

The 8086 hit the world in 1978 and was incredibly popular. It was
a 16 bit processor, which means most of its general purpose
registers are 16 bits, and most of its instructions operate on 16
bits.

5

32 bit 80386:1
In 1985, the 386 processors came out, they included 32 bit
instructions and registers.
For backwards compatibility, all of the 8086’s original 16 bit
registers were maintained. But most registers also got a 32 bit
version;

6

32 bit 80386:1

7

Pentium IV and x64

8

Pentium IV and x64
Streaming SIMD Extensions (SSE)

Advanced Vector Extensions (AVX)

AVX-512

Basic Syntax

2025-8-26

02
Part Two

10

The data Section
The data section is used for declaring initialized data or constants.

You can declare various constant values, file names, or buffer
size, etc., in this section.

This section cannot be expanded after the data elements are
declared, and it remains static throughout the program.

The syntax for declaring data section is −
• section .data

11

The bss Section

A dynamic memory section that contains buffers for data to
be declared later in the program.

zero-filled.

The syntax −
• section .bss

12

The text section

A section for keeping the actual code.

Begin with the declaration “global”, which tells the kernel
where the program execution begins.

The syntax −
section .text

global main
main:

13

Constants

We will particularly discuss three directives −

• equ
• %assign
• %define

14

Constants Examples: equ

15

Constants Examples: %assign

16

Constants Examples: %define

17

Variables
The syntax for storage allocation statement for initialized data is −
• [variable-name] define-directive initial-value [,initial-value]...

Where, variable-name is the identifier for each storage space. There
are five basic forms of the define directive.

18

Allocating Storage Space for initialized Data

choice db 'y'
number dw 12345

neg_number dw -12345
big_number dq 123456789 ; eight byte constant

real_number1 dd 1.234 ; floating-point constant
real_number2 dq 123.456 ; double-precision float

real_number_3 dt 1.234567e20 ; extended-precision float

19

Examples

20

Allocating Storage Space for Uninitialized Data
The reserve directives are used for reserving space for
uninitialized data. The reserve directives take a single operand
that specifies the number of units of space to be reserved.
There are five basic forms of the reserve directive −

21

Examples

22

Multiple Definitions and Initializations

choice dd 'Y' ; ASCII of Y = 79H
number1 dw 12345 ; 12345D = 3039H
number2 dd 12345679 ; 123456789D = 75BCD15H

You can have multiple data definition statements in a program.
For example −

The assembler allocates contiguous memory for multiple
variable definitions.

23

Multiple Definitions and Initializations

The TIMES directive allows multiple initializations to
the same value.

For example, an array named marks of size 9 can be
defined and initialized to zero using the following
statement −

• marks TIMES 9 DW 0

24

Multiple Definitions and Initializations

The TIMES directive is useful in defining arrays and
tables. The following program displays 9 asterisks on
the screen −

25

Efficiency

To tell NASM to compile our program with rip-relative
addressing, the following directive is used:

 default rel

Thus, we get what we want; the loader does less work,
and the program still runs, and we get our position-
independent code.

26

Addressing Modes

Addressing modes, put simply, are the different
conventions available by which an assembly instruction
can access registers or other memory. For example, the
instruction:

 mov rax, 0

Is what's known as an immediate addressing mode.
This is because the operand has a constant value.

27

Addressing Modes
In contrast, the instruction:
• mov rax, rbx

Is simply known as register
addressing, for obvious reasons.
We can also do what is known as
indirect register addressing:
• mov rax, [rbx]

Which basically results in the following operation.

Figure: Illustration of what happens after an
indirect address operation.

Calling Convention03
Part Three

29

Calling Convention

Simply put, it's a set of strict guidelines that our code must
adhere to in order for the operating system to be able to run
our assembly code.

30

The Microsoft x64 Calling Convention
Function parameters and return values
The first four integer arguments are passed in registers. Integer values are
passed in left-to-right order in RCX, RDX, R8, and R9, respectively.
Arguments five and higher are passed on the stack.

In order to follow the x64 calling convention, we must therefore pass a,
b, c and d in the registers rcx, rdx, r8 and r9 respectively, with e being
pushed onto the stack before calling the function foo(). Thus, if I wanted
to call foo() like so:

• foo(1, 3, 5, 7, 9);

void foo(int a, int b, int c, int d, int e)
{
 /// Some stuff happens here with the inputs passed in...
 return;
}

Figure: How the memory should be laid out before calling foo().

31

Floating-point arguments
Any floating-point and double-precision arguments in the first four
parameters are passed in XMM0 - XMM3, depending on position.
For floating-point arguments, the xmm registers 0 through 3 are used,
for a total of 4 arguments being passed in the registers, with the rest
being pushed onto the stack.
Let's see how this works with another example:

Assuming I wanted to call foo_fp() like so:
• foo_fp(0.1f, 0.2f, 0.3f, 0.4f, 0.5f);

void foo_fp(float a, float b, float c, float d, float e)
{
 // Do something with these floats...
 return;
}

Figure: How the memory should be laid out before calling foo_fp().

32

Questions?

As we can see, the concept applies much like it for integers. But
what if we have something like this?

void foo_mixed(int a, int b, float c, int d, float e)
{
 // Variable types of arguments...now what?
 return;
}

Which values go in which registers now?

33

Mixing parameter types
The answer is that the position of the argument dictates
which register it goes in. Therefore, if we called foo_mixed()
like so:
foo_mixed(1, 2, 0.3f, 4, 0.5f);

Figure: How the memory should be laid out before calling foo_mixed().

34

Return Values
The Microsoft x64 calling convention, thankfully, has simpler rules when it
comes to return values from functions.

• Any scalar return value 64 bits or less in size is returned in rax.
• Any floating-point value is returned in xmm0.

Thus, a function int foo() would return its value in the rax register, and a
function float foo() or double foo() would return its value in the xmm0 register.

35

The Microsoft C Runtime Library
What's the odd extern _CRT_INIT symbol we're importing? What's
that for?
If you're experienced enough with C/C++, you'll no doubt have guess
that the CRT refers to the C standard run-time library.
_CRT_INIT: _CRT_INIT is a CRT initialization function that sets up
various aspects of the C Runtime Library, including initializing global
variables, setting up memory allocation, and performing other
necessary setup tasks.

36

WinMain and main
let's look further down the code, to the first label in the .text section of our
assembly program:

main:

All C/C++ programmers should be familiar by now with the concept of their program's entry point, that is, the
initial point where code starts to execute when their program is loaded. The signature usually appears as
 int main(int argc, char *argv[]).

However, if you're familiar with Win32 API programming, you'll know that
things are not that simple. Technically, the entry point for Windows programs
is defined as WinMain, not main; specifying the subsystem to the MSVC
linker determines which entry point symbol is chosen by default. Additionally,
the MSVCRT's implementation of main actually calls WinMain, which means
that it's essentially a wrapper function. More than being just a simple
wrapper, however, there's one other important thing that MSVCRT's main
function does, and that is to also perform any static initialization of variables
required.

37

Making a stack
Let's continue looking at the example code.

The push psuedo-op takes the operand passed to it, decrements the
stack pointer, and then stores the operand on top of the stack. We do this
to the base pointer so that we can save the current position of the stack.
(So that if we need to refer to variables on the stack, we have a base
address to refer to, since we could be adding/removing objects from the
stack all the time and thus the stack pointer alone would be insufficient.)

 push rbp
 mov rbp, rsp
 sub rsp, 32

38

Calling functions in assembly
Instruction Pointer (IP): The 16-bit IP register stores the offset address of the
next instruction to be executed. IP in association with the CS register (as CS:IP)
gives the complete address of the current instruction in the code segment.
The next few lines are the real business logic of the example assembly code:

The first instruction here is a little confusing.
LEA stands for "Load Effective Address," but that name doesn't clearly explain what it
does. I like to think of LEA as being similar to MOV — both put a value into the first
operand. The key difference is how they get that value. MOV transfers actual data from
memory or a register, while LEA calculates the address from the second operand and
puts that address into the first operand.

 lea rcx, [msg]
 call printf

39

Shutting down the program
Now that we've printed our line out to the console, we're good. It's time to
shut it down!

Remember that according to the calling convention, the return value for a
function goes into rax for integers. Well, main is no different, and so we
exclusive-or the rax register with itself, effectively zero-ing it out, before
calling the Win32 ExitProcess function, thus ending the application.

 xor rax, rax
 call ExitProcess

40

Compiling and Linking an Assembly Program in NASM

You might be asking, “what on earth am I typing here?” at this point. We'll
go over this later. For now, though, let's just make sure that your toolchain
is working.

• Let's go ahead and try to assemble this text into an object file. Go to the directory where
hello_world.asm is located at and run the following command in a command prompt.

• nasm -f win64 -o hello_world.obj hello_world.asm
• If it worked, you should see the hello_world.obj file appear in the same directory as your

hello_world.asm file. We can then use the linker to create an executable out of this object
file.

• Run the following command from a command prompt that has the Visual Studio
environment variables set (x64 Native Tools Command Prompt for VS 2022)

• link hello_world.obj /subsystem:console /out:hello_world_basic.exe kernel32.lib
legacy_stdio_definitions.lib msvcrt.lib

41

Run
You should now have a hello_world.exe file in the directory. Run it, and if
you get the following output, congratulations, you've just wrote an
assembly program that runs on Windows!

• hello_world_basic.exe
• Hello world!

42

THE END

8/26/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

