M 8/28/2025

MONTANA

STATE UNIVERSITY

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing

Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

@ Overview

Arithmgtlc Conditions
Instructions

° Logical Instructions

>>>

Part One Arithmetic
01 | Instructions

¢ The INC Instruction

v« The INC instruction is used for incrementing an operand by one.
It works on a single operand that can be either in a register or in
memory.

v« The INC instruction has the following syntax —
* INC destination

v« The operand destination could be an 8-bit, 16-bit, 32-bit, or 64-
bit operand.

@ e
+~ Example INC RBX; Increments 64-bit register

INC DL; Increments 8-bit register
INC [count] ; Increments the count variable

- J 4

@) Example: INC

bits 64
default rel

;Print the string
section .data lea rcx, [message]

message db "Test INC!",0xd, Oxa, © call printf

format db "%1lu", Oxd, Oxa, O; printing format for qword numbers
; Print the constant value
mov qword [uninitializedData], 42
INC gword [uninitializedData]
SCE AR S mov rcx, format =iy

extern printf mov dl, byte [uninitializedData]

global main call printf
extern ExitProcess
extern _CRT_INIT

section .bss
uninitializedData resq 1

main: ; Exit the program
push rbp xor rax, rax
mov rbp, rsp call ExitProcess
sub rsp; 32

call _CRT_INIT

@) The DEC Instruction

v+« The DEC instruction is used for decrementing an operand by one. It
works on a single operand that can be either in a register or in
memory.

++ The DEC instruction has the following syntax -
* DEC destination

4« The operand destination could be an 8-bit, 16-bit, 32-bit or 64-bit
operand.

@) Example: DEC

bits 64
default rel

;Print the string

section .data lea rcx, [message]
message db "Test DEC!",0xd, Oxa, © call printf
format db "%11lu", Oxd, Oxa, O; printing format for qword numbers

; Print the constant value

mov qword [uninitializedData], 42
INC gword [uninitializedData]

DEC gword [uninitializedData]

mov rcx, format

mov dl, byte [uninitializedData]
call printf

section .bss
uninitializedData resq 1

section .text
extern printf
global main
extern ExitProcess
extern _CRT_INIT

main: ; Exit the program
push rbp Xor rax, rax
mov rbp, rsp call ExitProcess
sub rsp, J&
call _CRT_INIT

@) The ADD and SUB Instructions

4« The ADD and SUB instructions are used for performing simple
addition/subtraction of binary data in byte, word and doubleword size,
l.e., for adding or subtracting 8-bit, 16-bit, 32-bit or 64-bit operands,
respectively.

4+ The ADD and SUB instructions have the following syntax -
« ADD/SUB destination, source

4« The ADD/SUB instruction can take place between -
Register to register

Memory to register

Register to memory

Register to constant data

Memory to constant data

@ Examples

bits 64
default rel

section .data

resultMsg db "The result is: %11d", ©

section .text
global main

extern printf
extern ExitProcess
extern _CRT_INIT

main:
push rbp
mov rbp, rsp
sub rsg; 32
call _CRT_INIT

; Perform the signed subtraction
mov rax, 5

mov rbx, 10

sub rax, rbx

; Print the result
mov rcx, resultMsg
mov rdx, rax
call printf

mov rax, 5

mov rbx, 10

add rax, rbx

; Print the result
mov rcx, resultMsg
mov rdx, rax

call printf

; Exit the program
Xor rax, rax
call ExitProcess

@) The MUL/IMUL Instruction

4« There are two instructions for multiplying binary data. The MUL
(Multiply) instruction handles unsigned data and the IMUL (Integer
Multiply) handles signed data. Both instructions affect the Carry and
Overflow flag.

++« The syntax for the MUL/IMUL instructions is as follows -
« MUL/IMUL multiplier

4« Multiplicand in both cases will be in an accumulator, depending upon
the size of the multiplicand and the multiplier and the generated
product is also stored in two registers depending upon the size of the
operands.

10

@ Different Cases
v« When two bytes are multiplied -

v« The multiplicand is in the AL register, and the multiplier is a
byte in the memory or in another register. The product is in AX.
High-order 8 bits of the product is stored in AH and the low-
order 8 bits are stored in AL.

AH AL

AL X | 8 Bit Source

11

@ Different Cases

+ When two one-word values are multiplied -

++« The multiplicand should be in the AX register, and the multiplier is
a word in memory or another register. For example, for an
Instruction like MUL DX, you must store the multiplier in DX and
the multiplicand in AX.

+« The resultant product is a doubleword, which will need two
registers. The high-order (leftmost) portion gets stored in DX and
the lower-order (rightmost) portion gets stored in AX.

AX X | 16 Bit Source = DX AX

12

@ Different Cases

+« When two doubleword values are multiplied, the multiplicand
should be in EAX and the multiplier is a doubleword value stored
INn memory or in another register. The product generated is stored
In the EDX:EAX registers, i.e., the high order 32 bits gets stored

In the EDX register and the low order 32-bits are stored in the
EAX register.

EAX X 32 Bit Source

EDX EAX

13

@ Different Cases

++« When two gword values are multiplied, the multiplicand should
be iIn RAX and the multiplier is a gword value stored in
memory or in another register. The product generated is stored
in the RDX:RAX reqisters, i.e., the high order 64 bits gets
stored in the RDX register and the low order 64 bits are stored
In the RAX register.

RDX RAX

EAX X 64 bit Source

14

@ Examples

© MOV AL, 10

© MOV DL, 25

© MUL DL

O ..

© MOV DL, OFFH ; DL= -1
© MOV AL, OBEH ; AL = -66
© IMUL DL

15

@ Examples

bits 64
default rel

section .data

resultMsg db "The result is: %11d", ©

section .text
global main

extern printf
extern ExitProcess
extern _CRT_INIT

main:
push rbp
mov rbp, rsp
sub rsp, 32
call _CRT_INIT

; Perform unsigned multiplication
mov rax, 5

mov rbx, 7

mul rbx

; Print the result
mov rcx, resultMsg
mov rdx, rax
call printf

; Perform signed multiplication
mov rax, 5

mov rbx, -7

imul rax, rbx

; Print the result
mov rcx, resultMsg
mov rdx, rax
call printf

; Exit the program
Xor rax, rax
call ExitProcess

16

G The DIV/IDIV Instructions

4« The DIV (Divide) instruction is used for unsigned data and the IDIV
(Integer Divide) is used for signed data.

4« The format for the DIV/IDIV instruction —
 DIV/IDIV divisor

17

G The DIV/IDIV Instructions

4« The dividend is in an accumulator. Both the instructions can
work with 8-bit, 16-bit, 32-bit, or 64 bit operands. The
operation affects all six status flags. Following section
explains four cases of division with different operand size -

18

@ Different Cases
4« When the divisor is 1 byte —

4« The dividend is assumed to be in the AX register (16 bits).
After division, the quotient goes to the AL register and the
remainder goes to the AH register.

16 bit divdent

AX Quotient Remainder

= AL And AH

8 bit Divisor

19

@ Different Cases
< When the divisor is 1 word -

4« The dividend is assumed to be 32 bits long and in the EAX
registers. After division, the 16-bit quotient goes to the AX
register and the 16-bit remainder goes to the DX register.

32 bit divdent

FEAX Quotient Remainder

AX And DX

16 bit Divisor

20

@ Different Cases |
< When the divisor is doubleword -

v« The dividend is assumed to be 64 bits long and in the RAX
registers. After division, the 32-bit quotient goes to the EAX
register and the 32-bit remainder goes to the EDX register.

64 bit divdent

RAX Quotient Remainder

= EAX | And EDX

32 bit Divisor

21

@ Different Cases

4« When the divisor is qword —

+« The dividend is assumed to be 128 bits long and in the RAX
registers. The high-order 64 bits are in RDX and the low-
order 64 bits are in RAX. After division, the 64-bit quotient
goes to the RAX register and the 64-bit remainder goes to the

RDX register.

128 bit divdent

RDX RAX Quotient Remainder
RAX | And RDX

64 bit Divisor

22

@ Examples

bits 64
default rel

section .data ; The quotient is stored in RAX and the remainder in RDX
quotientMsg db "The quotient is: %11d", Oxd, ©xa, ©
remainderMsg db "The remainder is: %11d", Oxd, Oxa, O ; Print the quotient
mov rcx, quotientMsg
section .text mov rdx, rax
global main call printf
extern printf
extern ExitProcess ; Print the remainder
extern _CRT_INIT mov rcx, remainderMsg
mov rdx, rdx
main: call printf
push rbp
mov rbp, rsp
sub rsp, 32 ;Exit the program
call _CRT_INIT Xor rax, rax
call ExitProcess
; Perform unsigned division

mov rax, 15

mov rbx, 3

xor rdx, rdx ; Clear RDX to zero for the remainder
div rbx

23

>>>

Part Two

Logical Instructions

02

@ Logical Instructions

© The processor instruction set provides the instructions AND, OR, XOR,
TEST, and NOT Boolean logic, which tests, sets, and clears the bits
according to the need of the program.

O The format for these instructions -

Sr.No. Instruction Format

1 AND AND operandl, operand2
¥ OR OR operandl, operand?2
3 XOR XOR operandl, operand?2

4 TESY TEST operandl, operand?2

5 NOT NOT operandl

O The first operand in all the cases could be either in register or in memory. The second
operand could be either in register/memory or an immediate (constant) value. However,
memory-to-memory operations are not possible.

U These instructions compare or match bits of the operands and set the CF, OF, PF, SF and

ZF flags. 25

@) The AND Instruction

© The AND instruction is used for supporting logical expressions by
performing bitwise AND operation. The bitwise AND operation
returns 1, if the matching bits from both the operands are 1,
otherwise it returns 0. For example -

Operandl: 0101
Operand2: 0011

After AND -> Operandl: 0001

© The AND operation can be used for clearing one or more bits. For
example, say the BL register contains 0011 1010. If you need to
clear the high-order bits to zero, you AND it with OFH.

©U AND BL, OFH ; This sets BL to 0000 1010

26

@) The AND Instruction

O Let's take up another example. If you want to check
whether a given number is odd or even, a simple test
would be to check the least significant bit of the number. If
this is 1, the number Is odd, else the number Is even.

O Assuming the number is in AL register, we can write —

AND AL, 9O1H ; ANDing with 0000 0001
JZ EVEN_NUMBER

27

@ Examples

default rel

section .data
numl dd Ox2
num2 dd Ox1
format db "%x", ©
evenNum db "this is a even number!", Oxd, Oxa, O

section .bss
result resd 1

section .text
extern printf
global main
extern _CRT_INIT
extern ExitProcess

main:
push rbp
mov rbp, rsp
sub rsg, 32
call _CRT_INIT

; Perform bitwise AND between numl and num2

mov eax, [numl]
and eax, [num2]
jz evnn

mov [result], eax

; Load numl into EAX
; Perform AND operation with num2 and store the result in EAX

; Store the result in result variable

; Print the result in binary format

mov rcx, format
mov rdx, [result]
call printf

jmp outprog

evnn:
mov rcx, evenNum
call printf

outprog:
; Exit the program
xor eax, eax
call ExitProcess

28

@ The TEST Instruction

O The TEST instruction works same as the AND operation, but unlike
AND instruction, it does not change the first operand. So, if we need
to check whether a number in a register is even or odd, we can also

do this using the TEST instruction without changing the original
number.

LEST AL, ©1H
4 EVEN NUMBER

29

@ The NOT Instruction

O The NOT instruction implements the bitwise NOT operation. NOT
operation reverses the bits in an operand. The operand could be
either in a register or in the memory.

O For example,

Operandl: 0101 0011
After NOT -> Operandl: 1010 1100

30

>>>

art Thre

Conditions
03

@ Condition Execution

Conditional execution in assembly language is accomplished by
several looping and branching instructions. These instructions can
change the flow of control in a program. Conditional execution is
observed in two scenarios -

* Unconditional jump

* This 1s performed by the JMP instruction. Conditional execution often involves a
transfer of control to the address of an instruction that does not follow the currently
executing instruction. Transfer of control may be forward, to execute a new set of
instructions or backward, to re-execute the same steps.

» Conditional jump

* This is performed by a set of jump instructions j<condition> depending upon the
condition. The conditional instructions transfer the control by breaking the sequential
flow and they do it by changing the offset value in IP.

32

@ CMP Instruction

The CMP instruction compares two operands. It is generally used in
conditional execution. This instruction basically subtracts one operand from
the other for comparing whether the operands are equal or not. It does not
disturb the destination or source operands. It is used along with the
conditional jump instruction for decision making.

Syntax
« CMP destination, source

CMP compares two numeric data fields. The destination operand could be
either in register or in memory. The source operand could be a constant
(immediate) data, register or memory.

Example |CMPRAX, 00 ; Compare the DX value with zero
JE L7 ;If yes, then jump to label L7

L7:

33

@Y CMP Instruction

Y¢ CMP is often used for comparing whether a counter value has
reached the number of times a loop needs to be run.

¢ Consider the following typical condition -

Y Example
INC RDX
CMP RDX, 10 ; Compares whether the counter has reached 10
JLE LP1 ;Ifitisless than or equal to 10, then jump to LP1

34

@ Unconditional Jump

¥ The JMP instruction provides a label name where the flow of
control is transferred immediately. The syntax of the JMP
Instruction is -
JMP label

35

@ Examples

default rel

numl dd
num?2 dd

main:
push
mov
sub
call

section .data

0x2
ox1

format db "%x", O
evenNum db "this is a even number!™, Oxd, Oxa, ©

section .bss
result resd 1

section .text
extern printf
global main
extern _CRT_INIT
extern ExitProcess

rbp

rbp, rsp
rsp; 32
_CRT_INIT

evnn:

outprog:

; Perform bitwise AND between numl and num2

mov eax, [numl] ; Load numl into EAX
and eax, [num2] ; Perform AND operation with num2 and store the result in EAX
jz evnn

mov [result], eax ; Store the result in result variable
; Print the result in binary format

mov rcx, format

mov rdx, [result]

call printf

jmp outprog

mov rcx, evenNum
call printf

; Exit the program
xor eax, eax
call ExitProcess

36

@ Conditional Jump

¢ If some specified condition is satisfied in conditional jump, the control flow
Is transferred to a target instruction. There are numerous conditional jump
iInstructions depending upon the condition and data.

¢ Following are the conditional jump instructions used on signed data used
for arithmetic operations -

Instruction Description Flags tested
JENZ Jump Equal or Jump Zero ZF
IJNE/INZ Jump not Equal or Jump Not Zero Z
JG/INLE Jump Greater or Jump Not Less/Equal OF, SF, ZF
JGE/INL Jump Greater/Equal or Jump Not Less OF, SF
JL/INGE Jump Less or Jump Not Greater/Equal OF, SF
JLE/ING Jump Less/Equal or Jump Not Greater OF, SF, ZF

37

@ Conditional Jump

¥ Following are the conditional jump instructions used on
unsigned data used for logical operations -

Instruction Description Flags tested
JENZ Jump Equal or Jump Zero ZF
IJNE/INZ Jump not Equal or Jump Not Zero ZF
JA/INBE Jump Above or Jump Not Below/Equal CF, ZF
JAE/INB Jump Above/Equal or Jump Not Below CF
JB/INAE Jump Below or Jump Not Above/Equal CF
JBE/INA Jump Below/Equal or Jump Not Above AF, CF

38

@ Conditional Jump

¢ The following conditional jump instructions have special

uses and check the value of flags -

Instruction

IXCz

JIC

INC

JO

INO

JPAPE

INP/PO

15

INS

Description

Jump if CX is Zero
Jump If Carry

Jump If No Carry

Jump If Overflow

Jump If No Overflow
Jump Parity or Jump Parity Even
Jump No Parity or Jump Parity Odd
Jump Sign (negative value)

Jump No Sign (positive value)

Flags tested
none
CF
CF
OF
OF
PE
PF
SF

SF

39

@ Syntax

Y The syntax for the J<condition> set of instructions -

Y Example,

CMP AL, BL
JE EQUAL

CMP AL, BH
JE EQUAL

CMP AL, CL
JE EQUAL

NON_EQUAL: ...
EQUAL: ...

40

Loops

@ Loops

© The JMP instruction can be used for implementing
loops. For example, the following code snippet can be
used for executing the loop-body 10 times.

- MOV CX, 10

e L1:
e <LOOP-BODY>
 DEC CX

* JNZ L1

42

@ Loops

€ The processor instruction set, however, includes a group of loop instructions
for implementing iteration.

€ The basic LOOP instruction has the following syntax -
« LOOP label

© Where, label is the target label that identifies the target instruction as in the
jump instructions. The LOOP instruction assumes that the ECX register
contains the loop count. When the loop instruction is executed, the ECX
register is decremented and the control jumps to the target label, until the
ECX register value, i.e., the counter reaches the value zero.

€ The above code snippet could be written as - ;wlw ECX, 10

<loop body>

loop 11 43

@ Examples

bits 64
default rel

section .data
format db "%d", ©
newline db ©x0A, 0x00
section .bss
temrcx resq 1

section .text
extern printf
global main
extern _CRT_INIT
extern ExitProcess
main:

push rbp

mov rbp, rsp
sub rsp, 32
call _CRT_INIT

; Initialize loop counter

mov rcx, 10

loop start:
; Print the current number
mov qword [temrcx], rcx
mov rcx, format
mov rdx, qword [temrcx]
call printf

; Print newline character
lea rcx, newline
call printf

mov rcx, gqword [temrcx]
; Decrement loop counter and check if it's zero
loop loop start

; Exit the program
Xor eax, eax
call ExitProcess

44

M

MONTANA

STATE UNIVERSITY

THE END

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

8/28/2025

