
8/28/2025

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

01 Arithmetic
Instructions

02 Logical Instructions 04 Loops

01 Arithmetic
Instructions 03 Conditions

Arithmetic
Instructions

2025-8-23

01
Part One

4

The INC Instruction
The INC instruction is used for incrementing an operand by one.
It works on a single operand that can be either in a register or in
memory.
The INC instruction has the following syntax −
• INC destination

The operand destination could be an 8-bit, 16-bit, 32-bit, or 64-
bit operand.
Example INC RBX; Increments 64-bit register

INC DL; Increments 8-bit register
INC [count] ; Increments the count variable

5

Example: INC

6

The DEC Instruction
The DEC instruction is used for decrementing an operand by one. It
works on a single operand that can be either in a register or in
memory.
The DEC instruction has the following syntax −
• DEC destination

The operand destination could be an 8-bit, 16-bit, 32-bit or 64-bit
operand.

7

Example: DEC

8

The ADD and SUB Instructions
The ADD and SUB instructions are used for performing simple
addition/subtraction of binary data in byte, word and doubleword size,
i.e., for adding or subtracting 8-bit, 16-bit, 32-bit or 64-bit operands,
respectively.

The ADD and SUB instructions have the following syntax −
• ADD/SUB destination, source

The ADD/SUB instruction can take place between −
• Register to register
• Memory to register
• Register to memory
• Register to constant data
• Memory to constant data

9

Examples

10

The MUL/IMUL Instruction
There are two instructions for multiplying binary data. The MUL
(Multiply) instruction handles unsigned data and the IMUL (Integer
Multiply) handles signed data. Both instructions affect the Carry and
Overflow flag.

The syntax for the MUL/IMUL instructions is as follows −
• MUL/IMUL multiplier

Multiplicand in both cases will be in an accumulator, depending upon
the size of the multiplicand and the multiplier and the generated
product is also stored in two registers depending upon the size of the
operands.

11

Different Cases
When two bytes are multiplied −

The multiplicand is in the AL register, and the multiplier is a
byte in the memory or in another register. The product is in AX.
High-order 8 bits of the product is stored in AH and the low-
order 8 bits are stored in AL.

12

Different Cases
When two one-word values are multiplied −
The multiplicand should be in the AX register, and the multiplier is
a word in memory or another register. For example, for an
instruction like MUL DX, you must store the multiplier in DX and
the multiplicand in AX.
The resultant product is a doubleword, which will need two
registers. The high-order (leftmost) portion gets stored in DX and
the lower-order (rightmost) portion gets stored in AX.

13

Different Cases
When two doubleword values are multiplied, the multiplicand
should be in EAX and the multiplier is a doubleword value stored
in memory or in another register. The product generated is stored
in the EDX:EAX registers, i.e., the high order 32 bits gets stored
in the EDX register and the low order 32-bits are stored in the
EAX register.

14

Different Cases
When two qword values are multiplied, the multiplicand should
be in RAX and the multiplier is a qword value stored in
memory or in another register. The product generated is stored
in the RDX:RAX registers, i.e., the high order 64 bits gets
stored in the RDX register and the low order 64 bits are stored
in the RAX register.

64 bit Source RDX RAX

15

Examples
MOV AL, 10

MOV DL, 25

MUL DL

...

MOV DL, 0FFH ; DL= -1

MOV AL, 0BEH ; AL = -66

IMUL DL

16

Examples

17

The DIV/IDIV Instructions
The DIV (Divide) instruction is used for unsigned data and the IDIV
(Integer Divide) is used for signed data.

The format for the DIV/IDIV instruction −
• DIV/IDIV divisor

18

The DIV/IDIV Instructions

The dividend is in an accumulator. Both the instructions can
work with 8-bit, 16-bit, 32-bit, or 64 bit operands. The
operation affects all six status flags. Following section
explains four cases of division with different operand size −

19

Different Cases
When the divisor is 1 byte −

The dividend is assumed to be in the AX register (16 bits).
After division, the quotient goes to the AL register and the
remainder goes to the AH register.

16 bit divdent

AX

8 bit Divisor
= AL

Quotient

And AH

Remainder

20

Different Cases
When the divisor is 1 word −

The dividend is assumed to be 32 bits long and in the EAX
registers. After division, the 16-bit quotient goes to the AX
register and the 16-bit remainder goes to the DX register.

32 bit divdent

EAX

16 bit Divisor
= AX

Quotient

And DX

Remainder

21

Different Cases
When the divisor is doubleword −

The dividend is assumed to be 64 bits long and in the RAX
registers. After division, the 32-bit quotient goes to the EAX
register and the 32-bit remainder goes to the EDX register.

64 bit divdent

RAX

32 bit Divisor
= EAX

Quotient

And EDX

Remainder

22

Different Cases
When the divisor is qword −
The dividend is assumed to be 128 bits long and in the RAX
registers. The high-order 64 bits are in RDX and the low-
order 64 bits are in RAX. After division, the 64-bit quotient
goes to the RAX register and the 64-bit remainder goes to the
RDX register.

128 bit divdent

RDX RAX

64 bit Divisor
= RAX

Quotient

And RDX

Remainder

23

Examples

Logical Instructions

2025-8-23

02
Part Two

25

Logical Instructions
The processor instruction set provides the instructions AND, OR, XOR,
TEST, and NOT Boolean logic, which tests, sets, and clears the bits
according to the need of the program.
The format for these instructions −

The first operand in all the cases could be either in register or in memory. The second
operand could be either in register/memory or an immediate (constant) value. However,
memory-to-memory operations are not possible.
These instructions compare or match bits of the operands and set the CF, OF, PF, SF and
ZF flags.

26

The AND Instruction
The AND instruction is used for supporting logical expressions by
performing bitwise AND operation. The bitwise AND operation
returns 1, if the matching bits from both the operands are 1,
otherwise it returns 0. For example −

The AND operation can be used for clearing one or more bits. For
example, say the BL register contains 0011 1010. If you need to
clear the high-order bits to zero, you AND it with 0FH.
AND BL, 0FH ; This sets BL to 0000 1010

27

The AND Instruction

Let's take up another example. If you want to check
whether a given number is odd or even, a simple test
would be to check the least significant bit of the number. If
this is 1, the number is odd, else the number is even.
Assuming the number is in AL register, we can write −

28

Examples

29

The TEST Instruction
The TEST instruction works same as the AND operation, but unlike
AND instruction, it does not change the first operand. So, if we need
to check whether a number in a register is even or odd, we can also
do this using the TEST instruction without changing the original
number.

30

The NOT Instruction
The NOT instruction implements the bitwise NOT operation. NOT
operation reverses the bits in an operand. The operand could be
either in a register or in the memory.

For example,

Conditions
03

Part Three

32

Condition Execution
Conditional execution in assembly language is accomplished by
several looping and branching instructions. These instructions can
change the flow of control in a program. Conditional execution is
observed in two scenarios −

• Unconditional jump
• This is performed by the JMP instruction. Conditional execution often involves a

transfer of control to the address of an instruction that does not follow the currently
executing instruction. Transfer of control may be forward, to execute a new set of
instructions or backward, to re-execute the same steps.

• Conditional jump
• This is performed by a set of jump instructions j<condition> depending upon the

condition. The conditional instructions transfer the control by breaking the sequential
flow and they do it by changing the offset value in IP.

33

CMP Instruction
The CMP instruction compares two operands. It is generally used in
conditional execution. This instruction basically subtracts one operand from
the other for comparing whether the operands are equal or not. It does not
disturb the destination or source operands. It is used along with the
conditional jump instruction for decision making.
Syntax

• CMP destination, source
CMP compares two numeric data fields. The destination operand could be
either in register or in memory. The source operand could be a constant
(immediate) data, register or memory.
Example CMP RAX, 00 ; Compare the DX value with zero

JE L7 ; If yes, then jump to label L7
.
.
L7: ...

34

CMP Instruction
CMP is often used for comparing whether a counter value has
reached the number of times a loop needs to be run.
Consider the following typical condition −
Example

INC RDX

CMP RDX, 10 ; Compares whether the counter has reached 10

JLE LP1 ; If it is less than or equal to 10, then jump to LP1

35

Unconditional Jump

The JMP instruction provides a label name where the flow of
control is transferred immediately. The syntax of the JMP
instruction is −

JMP label

36

Examples

37

Conditional Jump
If some specified condition is satisfied in conditional jump, the control flow
is transferred to a target instruction. There are numerous conditional jump
instructions depending upon the condition and data.
Following are the conditional jump instructions used on signed data used
for arithmetic operations −

38

Conditional Jump
Following are the conditional jump instructions used on
unsigned data used for logical operations −

39

Conditional Jump
The following conditional jump instructions have special
uses and check the value of flags −

40

Syntax
The syntax for the J<condition> set of instructions −

Example,

41

Loops

2025-8-23

04
Part Four

42

Loops

The JMP instruction can be used for implementing
loops. For example, the following code snippet can be
used for executing the loop-body 10 times.
• MOV CX, 10
• L1:
• <LOOP-BODY>
• DEC CX
• JNZ L1

43

Loops
The processor instruction set, however, includes a group of loop instructions
for implementing iteration.
The basic LOOP instruction has the following syntax −

• LOOP label
Where, label is the target label that identifies the target instruction as in the
jump instructions. The LOOP instruction assumes that the ECX register
contains the loop count. When the loop instruction is executed, the ECX
register is decremented and the control jumps to the target label, until the
ECX register value, i.e., the counter reaches the value zero.
The above code snippet could be written as −

44

Examples

45

THE END

8/28/2025

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

