
2023.10.10

Malicious Code
Analysis

Fangtian Zhong
CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

2

Overview

02 NT Header

01 DOS Header

3

DOS Header

2025-8-22

01
Part One

4

PE

5

DOS Header

The DOS header (also called the MS-DOS header)
is a 64-byte-long structure that exists at the start of
the PE file.

6

DOS Header
typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
 WORD e_magic; // Magic number
 WORD e_cblp; // Bytes on last page of file
 WORD e_cp; // Pages in file
 WORD e_crlc; // Relocations
 WORD e_cparhdr; // Size of header in paragraphs
 WORD e_minalloc; // Minimum extra paragraphs needed
 WORD e_maxalloc; // Maximum extra paragraphs needed
 WORD e_ss; // Initial (relative) SS value
 WORD e_sp; // Initial SP value
 WORD e_csum; // Checksum
 WORD e_ip; // Initial IP value
 WORD e_cs; // Initial (relative) CS value
 WORD e_lfarlc; // File address of relocation table
 WORD e_ovno; // Overlay number
 WORD e_res[4]; // Reserved words
 WORD e_oemid; // OEM identifier (for e_oeminfo)
 WORD e_oeminfo; // OEM information; e_oemid specific
 WORD e_res2[10]; // Reserved words
 LONG e_lfanew; // File address of new exe header
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

7

Fields

q This is the first member of the DOS
Header, it’s a WORD so it occupies
2 bytes, it’s usually called the magic
number. It has a fixed value of
0x5A4D or MZ in ASCII, and it
serves as a signature that marks the
file as an MS-DOS executable.

e_magic
q This is the last member of the DOS

header structure, it’s located at offset
0x3C into the DOS header and it
holds an offset to the start of the NT
headers. This member is important
to the PE loader on Windows
systems because it tells the loader
where to look for the file header.

e_lfanew

8

Examples

9

Explanations

As you can see, the first member of the header is the magic number
with the fixed value we talked about which was 5A4D.
The last member of the header (at offset 0x3C) is given the name
“File address of new exe header”, it has the value 100, we can follow
to that offset and we’ll find the start of the NT headers as expected:

0 1 2 3 4 5 6 7 8 9 A B C D E F
100 50 45 00 00 64 86 06 00 03 DE 59 61 00 00 00 00
110 00 00 00 00 F0 00 22 00 0B 02 0E 1A 00 0E 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F
P E . . d & Y a
. . . . a . ”

10

DOS Stub

This is a small segment of code at the beginning of the file that is
executed by the MS-DOS operating system to display an error
message if the file is not compatible with the operating system.
This is what gets executed when the program is loaded in MS-DOS,
the default error message is “This program cannot be run in DOS
mode.”, however this message can be changed by the user during
compile time.

11

DOS Stub

To be able to disassemble the machine code of the DOS stub, I
copied the code of the stub from PE-bear, then I created a new
file with the stub contents using a hex editor (HxD).

12

DOS Stub

13

Assembly

m After that I used IDA to

disassemble the executable,

MS-DOS programs are 16-bit

programs, so I chose the intel

8086 processor type and the

16-bit disassembly mode.

14

Assembly

15

Assembly

seg000:0000 push cs
seg000:0001 pop ds

m First line pushes the value of cs onto the stack and the
second line pops that value from the top of stack into
ds. This is just a way of setting the value of the data
segment to the same value as the code segment.

16

Assembly

seg000:0002 mov dx, 0Eh
seg000:0005 mov ah, 9
seg000:0007 int 21h ; DOS - PRINT STRING
seg000:0007 ; DS:DX -> string terminated by "$"

These three lines are responsible for printing the error message, first line sets dx to the
address of the string “This program cannot be run in DOS mode.” (0xe), second line sets
ah to 9 and the last line invokes interrupt 21h.
Interrupt 21h is a DOS interrupt (API call) that can do a lot of things, it takes a parameter
that determines what function to execute and that parameter is passed in the ah register.
We see here that the value 9 is given to the interrupt, 9 is the code of the function that
prints a string to the screen, that function takes a parameter which is the address of the
string to print, that parameter is passed in the dx register as we can see in the code.

17

Assembly

The last three lines of the program are again an interrupt 21h call.
There’s a mov instruction that puts 0X4C01 into ax. This sets al to 0x01
and ah to 0x4c.
0x4c is the function code of the function that exits with an error code, it
takes the error code from al, which in this case is 1.
In summary, all the DOS stub is doing is print the error message then
exit with code 1.

seg000:0009 mov ax, 4C01h
seg000:000C int 21h ; DOS - 2+ - QUIT WITH EXIT CODE (EXIT)
seg000:000C ; AL = exit code

18

Rich Header

We’ve seen the DOS Header and the DOS Stub, however
there’s still a chunk of data we haven’t talked about lying
between the DOS Stub and the start of the NT Headers.

19

Rich Header

That’s only present in executables built using the Microsoft
Visual Studio toolset.
This structure holds some metadata about the tools used to
build the executable like their names or types and their specific
versions and build numbers.
The Rich Header consists of a chunk of XORed data followed
by a signature (Rich) and a 32-bit checksum value that is the
XOR key.

20

Rich Header

The encrypted data consists of a DWORD signature DanS,
3 zeroed-out DWORDs for padding, then pairs of
DWORDS each pair representing an entry, and each entry
holds a tool name, its build number and the number of
times it’s been used.
In each DWORD pair the first pair holds the type ID or the
product ID in the high WORD and the build ID in the low
WORD, the second pair holds the use count.

21

Rich Header

22

Rich Header

23

PE Structure

24

NT Header

2025-8-22

02
Part Two

25

NT Header

typedef struct _IMAGE_NT_HEADERS64 {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER64 OptionalHeader;
} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

26

Signature

This is a 4-byte signature that identifies the file as a PE file.
It always has a fixed value of 0x50450000 which translates to
PE\0\0 in ASCII.

27

COFF (Common Object File Format) Header

This header contains information about the file's
format, including the size of the code and data
sections, the number of sections, and the size of the
optional header.

28

COFF Header

typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;
 WORD NumberOfSections;
 DWORD TimeDateStamp;
 DWORD PointerToSymbolTable;
 DWORD NumberOfSymbols;
 WORD SizeOfOptionalHeader;
 WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

29

Fields
Machine: This is a number that indicates the type of machine (CPU
Architecture) the executable is targeting, this field can have a lot of values, but
we’re only interested in two of them, 0x8864 for AMD64 and 0x14c for i386.

Constant Value Description
IMAGE_FILE_MACHINE_UNKNOWN 0x0 The content of this field is assumed to be applicable to any machine type

IMAGE_FILE_MACHINE_ALPHA 0x184 Alpha AXP, 32-bit address space

IMAGE_FILE_MACHINE_ALPHA64 0x284 Alpha 64, 64-bit address space

IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33

IMAGE_FILE_MACHINE_AMD64 0x8664 x64

IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian

IMAGE_FILE_MACHINE_ARM64 0xaa64 ARM64 little endian

IMAGE_FILE_MACHINE_ARMNT 0x1cd ARM Thumb-2 little endian

IMAGE_FILE_MACHINE_AXP64 0x284 AXP 64 (Same as Alpha 64)

IMAGE_FILE_MACHINE_EBC 0xebc EFI byte code

IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or later processors and compatible processors

30

Fields
Machine: This is a number that indicates the type of machine (CPU
Architecture) the executable is targeting, this field can have a lot of values, but
we’re only interested in two of them, 0x8864 for AMD64 and 0x14c for i386.

Constant Value Description
IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family

IMAGE_FILE_MACHINE_LOONGARCH32 0x6232 LoongArch 32-bit processor family

IMAGE_FILE_MACHINE_LOONGARCH64 0x6264 LoongArch 64-bit processor family

IMAGE_FILE_MACHINE_M32R 0x9041 Mitsubishi M32R little endian

IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16

IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU

IMAGE_FILE_MACHINE_MIPSFPU16 0x466 MIPS 16 with FPU

IMAGE_FILE_MACHINE_POWERPC 0x1f0 Power PC little endian

IMAGE_FILE_MACHINE_POWERPCFP 0x1f1 Power PC with floating point support

IMAGE_FILE_MACHINE_R4000 0x166 MIPS little endian

IMAGE_FILE_MACHINE_RISCV32 0x5032 RISC-V 32-bit address space

IMAGE_FILE_MACHINE_RISCV64 0x5064 RISC-V 64-bit address space

IMAGE_FILE_MACHINE_RISCV128 0x5128 RISC-V 128-bit address space

31

Fields
Machine: This is a number that indicates the type of machine (CPU
Architecture) the executable is targeting, this field can have a lot of
values, but we’re only interested in two of them, 0x8864 for AMD64
and 0x14c for i386.

Constant Value Description

IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3

IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP

IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4

IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SH5

IMAGE_FILE_MACHINE_THUMB 0x1c2 Thumb

IMAGE_FILE_MACHINE_WCEMIPSV2 0x169 MIPS little-endian WCE v2

32

Fields
NumberOfSections: This field holds the number of sections (or the
number of section headers. the size of the section table.)
TimeDateStamp: A unix timestamp that indicates when the file was
created.
PointerToSymbolTable and NumberOfSymbols: These two fields
hold the file offset to the COFF symbol table and the number of
entries in that symbol table, however they get set to 0 which means
that no COFF symbol table is present, this is done because the
COFF debugging information is deprecated.

33

Fields
SizeOfOptionalHeader: The size of the Optional Header.

Characteristics: A flag that indicates the attributes of the file,
these attributes can be things like the file being executable, the
file being a system file and not a user program, and a lot of
other things.

34

Characteristics

Flag Value Description

IMAGE_FILE_RELOCS_STRIPPED 0x0001

Image only, Windows CE, and Microsoft Windows NT and later. This
indicates that the file does not contain base relocations and must
therefore be loaded at its preferred base address. If the base address is
not available, the loader reports an error. The default behavior of the
linker is to strip base relocations from executable (EXE) files.

IMAGE_FILE_EXECUTABLE_IMAGE 0x0002 Image only.This indicates that the image file is valid and can be run.
If this flag is not set, it indicates a linker error.

IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004 COFF line numbers have been removed.This flag is deprecated and
should be zero.

IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008 COFF symbol table entries for local symbols have been removed.
This flag is deprecated and should be zero.

35

Characteristics

Constant Value Description

IMAGE_FILE_AGGRESSIVE_WS_TRIM 0x0010 Obsolete.Aggressively trim working set.This flag is deprecated for
Windows 2000 and later and must be zero.

IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 Application can handle>2-GB addresses.

0x0040 This flag is reserved for future use.

IMAGE_FILE_BYTES_REVERSED_LO 0x0080
Little endian: the least significant bit (LSB)precedes the most
significant bit (MSB) in memory. This flag is deprecated and should
be zero.

IMAGE_FILE_32BIT_MACHINE 0x0100 Machine is based on a 32-bit-word architecture.

IMAGE_FILE_DEBUG_STRIPPED 0x0200 Debugging information is removed from the image file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 If the image is on removable media,fully load it and copy it to the
swap file.

IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 If the image is on network media,fully load it and copy it to the
swap file.

36

Characteristics

Constant Value Description

IMAGE_FILE_SYSTEM 0x1000 The image file is a system file,not a user program.

IMAGE_FILE_DLL 0x2000
The image file is a dynamic-link library (DLL). Such files are
considered executable files for almost all purposes, although they
cannot be directly run.

IMAGE_FILE_UP_SYSTEM_ONLY 0x4000 The file should be run only on a uniprocessor machine.

IMAGE_FILE_BYTES_REVERSED_HI 0x8000 Big endian:the MSB precedes the LSB in memory. This flag is
deprecated and should be zero.

37

COFF Header

38

THE END

2025.09.04

Fangtian Zhong

CSCI 591

Gianforte School of Computing
Norm Asbjornson College of Engineering

E-mail: fangtian.zhong@montana.edu

